
III III 0 IIOI OlD 1101 OII DID IIII 0I I0I 101 0II 101 1010 II 0I II
US 20210358296A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 202 1/0358296 Al

LEE et al. (43) Pub. Date: Nov. 18, 2021

(54) BIRD'S EYE VIEW BASED VELOCITY
ESTIMATION

(71) Applicant: TOYOTA RESEARCH INSTITUTE,
INC., Los Altos, CA (US)

(72) Inventors: Kuan-Hui LEE, San Jose, CA (US);
Matthew T. Kliemann, Ann Arbor, MI
(US); Adrien David Gaidon, Mountain
View, CA (US)

(21) Appl. No.: 16/876,699

(22) Filed: May 18, 2020

Publication Classification

(51) Int. Cl.
GO8G 1/01 (2006.01)
G06T 7/246 (2006.01)
B60W 60/00 (2006.01)
G06K 9/62 (2006.01)

20
/

/
324 7 322

332

ici
shared w -

P tPllr

(52) U.S. Cl.
CPCGO8G 1/0116 (2013.01); GO6T 7/246

(2017.01); G06T 2207/1 0028 (2013.01); B6OW
60/002 72 (2020.02); GO6K 9/6259 (2013.01);

B6OW 60/0011 (2020.02)

(57) ABSTRACT

Systems and methods determining velocity of an object
associated with a three-dimensional (3D) scene may include:
a LIDAR system generating two sets of 3D point cloud data
of the scene from two consecutive point cloud sweeps; a
pillar feature network encoding data of the point cloud data
to extract two-dimensional (2D) bird' s-eye-view embed-
dings for each of the point cloud data sets in the form of
pseudo images, wherein the 2D bird's-eye-view embeddings
for a first of the two point cloud data sets comprises pillar
features for the first point cloud data set and the 2D
bird' s-eye-view embeddings for a second of the two point
cloud data sets comprises pillar features for the second point
cloud data set; and a feature pyramid network encoding the
pillar features and performing a 2D optical flow estimation
to estimate the velocity of the object.

340 350

Patent Application Publication Nov. 18, 2021 Sheet 1 of 7 US 2021/0358296 Al

0
0

z
o LU Q

-J (I)

C)

Cl)

LO
CN

LU Q _ LLJ
I-
C')

I
H

z

H

I C/)
I 2:

W
(9

I Q

w
F- I
C,) '
>-

-

L. ---------.1
C/)
0
2:
I-

a-o o 0
0)
CO(D
LU

0
3-

U
— LLJ

LU
HZ

LUUJ
JO

OZ

a 2ILiQ —I
c1D

0
z Q::z

ZC)
co

IC')
ujD
H (/)LL
(I)

C/)

uJ
C/)
>-
C,)
uJ
-J
0

uJ
>

I I I l i I I I I I
IQ I I

i i FD
I to
I I

1 1< 1 1<
I Ia I I≥ ' 0 0

0

I Icr I I:j: Z
(O I N.i

Co

LLJ ' o i I I I< iI IQ I I H t I LIJ 1 (1)
< lo

I Ia
I I

I I u
I I

I H
'

H z
I I I 1 1< I

j C/) w
Co

i i__i i _ __

Patent Application Publication Nov. 18, 2021 Sheet 2 of 7 US 2021/0358296 Al

LIDAR SYSTEM Q

POINT CLOUD GENERATOR 24Q

FLOW ESTIMATION MODULE 2fl
_________ I-------

I I
STRUCTIONS I I PROCESSOR I

1MEMORY2
IN

i i I 24 1 __

_______________________ I I I i

DRIVERALER1 ADAS AVCONTROL I
I] ___ ___

L__L -------------

VEHICLE SYSTEMS

Patent Application Publication Nov. 18, 2021 Sheet 3 of 7

N.
H

4

US 2021/0358296 Al

Patent Application Publication Nov. 18, 2021 Sheet 4 of 7 US 2021/0358296 Al

422
RECEIVE POINT CLOUDS

424
VOXELIZE POINT CLOUD DATA

ENCODE VOXEL INFORMATION TO LABEL
FEATURES

SCATTER ENCODED FEATURES BACK TO I r 428
PILLAR LOCATIONS TO CREATE BEV I

430
ENCODE PILLAR FEATURES WITH A

FEATURE PYRAMID NETWORK

432
WARP FIRST BEV IMAGE

434
COMPUTE COST

436
USE COST TO ESTIMATE OBJECT FLOW

USE CONTEXTUAL INFORMATION TO I f 436
REFINE THE FLOW ESTIMATE I

Fig. 4

Patent Application Publication Nov. 18, 2021 Sheet 5 of 7

0
C)

0
a

A

-

\
'N

4. =

\ \

Li N

40
\f\

*-

t

US 2021/0358296 Al

LC)

U-

Patent Application Publication Nov. 18, 2021 Sheet 6 of 7 US 2021/0358296 Al

ENCODE POINT CLOUD DATA SETS TO
EXTRACT 2D BIRD'S-EYE-VIEW

EMBEDDINGS FOR POINT CLOUD DATA
SETS

AGGREGATE EMBEDDINGS TO TRAIN
CLASSIFIERS FOR THE FEATURES

MASK AGGREGATED FEATURES

PERFORM FORWARD AND BACKWARD
FLOW ESTIMATION ON IMAGE

EMBEDDINGS

PERFORM SELF-SUPERVISED LEARNING
BASED ON FLOW ESTIMATES

Fig. 6

622

624

626

j _628

j 63O

Patent Application Publication Nov. 18, 2021 Sheet 7 of 7 US 2021/0358296 Al

700

PROCESSOR 7.Q4

MEMORY
708

STORAGE DEVICES
710

MEDIADRIVEFH
MEDIA _______

7i2 Lt4 I
BUS

__ _____

7-Q STORAGE STORAGE
UNIT I/F UNIT

COMM I/F724 CHANNELZ2

Fig. 7

US 202 1/0358296 Al

BIRD'S EYE VIEW BASED VELOCITY
ESTIMATION

TECHNICAL FIELD

10001] The present disclosure relates generally to velocity
estimation, and in particular, some implementations may
relate to converting point cloud information into a two
dimensional form for velocity estimation.

DESCRIPTION OF RELATED ART

10002] Deploying autonomous vehicles (AVs) is a tech-
nologically complex challenge. Among other challenges,
AVs need to accurately detect and track moving objects such
as vehicles, pedestrians, and cyclists in realtime. In autono-
mous driving, accurately estimating the state of surrounding
obstacles is critical for safe and robust path planning.
However, this perception task is difficult, particularly for
generic obstacles, due to appearance and occlusion changes.
Perceptual errors can manifest as braking and swerving
maneuvers that can be unsafe and uncomfortable. Many
contemporary autonomous driving systems utilize a "detect
then track" approach to perceive the state of objects in the
environment. This approach has strongly benefited from
recent advancements in 3-D object detection and state
estimation. However, this approach often suffers errors as it
relies on geometric consistency of the object detection
results over time. These errors can include: False negatives,
or failing to produce detection where an obstacle exists;
false positives, or hallucinating an obstacle where none
exists; a limited predefined ontology of detectable object
classes resulting in certain types of obstacles, such as
guardrails or road debris, not being directly recognized
(while another module may handle detection of these
obstacles, it often lacks the priors needed to represent these
obstacle consistently for tracking purposes); observing a
dynamic scene from a moving platform requiring the system
to cope with changing viewpoints and occlusions, which
may result in temporally inconsistent detections of the same
object leading to false motion estimates (e.g., perceptual
aliasing of a long guardrail can often create hallucinated
motion); and obstacle kinematic models used in object
tracking can further compound the problem, causing failed
or incorrect associations, particularly when the state initial-
ization is poor.
10003] To estimate motion in the surrounding world, con-
ventional solutions have estimated scene flow directly from
LIDAR sweeps. Some techniques formulate the rigid scene
flow estimation by an energy minimization along with
SHOT feature descriptors. Others use a learning based flow
estimation by training encoding network to extract features
from point cloud grids.
10004] Some solutions rely on the depth image represen-
tation for flow estimation, using a LIDAR-generated depth
image representation with a convolutional neural network
(CNN) to estimate the motion of the surrounding vehicles.
Others introduce a 3-D scene flow approach built on the top
of FlowNet to compute point cloud images for dense 3-D
flow prediction.
10005] Unstructured data representation has also been
applied to scene flow estimation. Some have proposed an
end-to-end deep network to fuse features from unstructured
point clouds from two consecutive LIDAR sweeps. Others
have proposed a parametric continuous convolution layer for

Nov. 18, 2021

non-grid structured data, and demonstrated the applications
in point cloud segmentation and LIDAR motion estimation.
Still others propose using FlowNet3D, which builds on
PointNet++, leveraging a flow embedding layer to fuse two
consecutive LIDAR sweeps. Extensions of this use addi-
tional geometric loss functions beyond L2 distance (Point to
Plane and Cosine Distance) and develop a new evaluation by
looking at the 3D reconstruction quality of dynamic models.
It has also been proposed to use PointFlowNet to jointly
train the tasks of 3-D scene flow, rigid motion prediction and
3D object detection from unstructured LIDAR data.
10006] Recent solutions have used a self-supervised
mechanism leveraging geometric loss constraints for 3-D
scene flow estimation. Others propose an adaptation of the
PWCNet architecture for 3-D scene flow estimation trained
in a self-supervised way.
10007] Occupancy grid maps (OGMs) are widely used to
represent scene obstacle occupancy for robotics applica-
tions. In some solutions a deep tracking framework incor-
porates a simple recurrent neural network (RNN) to learn
0GM-to -0GM mappings. A 2-D BeV flow estimator can be
formulated as a similarity learning problem by transferring
3D 0GM into 2-D grids of embedding. A separate classifier
removes background cells and the remaining foreground
cells are matched between frames using an expectation
maximization algorithm. The RNN technique can be
extended by using a spatial transformer module and dilated
gated recurrent units instead of a simple RNN to account for
observations from a moving platform. These employ a
self-supervised training scheme to use the un-occluded
portions of future frames as training examples. A learned
approach to determine a motion mask on an 0GM using
hand crafted input features such as mean intensity and height
range of points falling within each cell, rather than raw point
clouds, can also be used.
10008] Estimation of the per cell motion state within an
occupancy grid is a recent advancement. These are typically
referred to as dynamic occupancy grid maps (DOGMa).
Online versions typically model this state using particle
filtering. One implementation of DOGMa uses a particle
filtering scheme. Various methods have also been proposed
to cluster and extract obstacle level representations from a
DOGMa for multiple object tracking. Various deep learning
works build on the DOGMa representation for various tasks.
One augments the DOGMa with a recurrent network trained
by self-supervised labeling to predict future states. Another
builds upon the Dynamic Occupancy Grid to do semantic
segmentation of the DOGMa internal per cell state as static
or dynamic.

BRIEF SUMMARY OF THE DISCLOSURE

10009] Embodiments may be implemented to provide an
end-to-end deep learning framework for LIDAR-based flow
estimation using a bird's eye view (BeV). Embodiments
may use consecutive point cloud pairs as input data sets and
produce a 2-D BeV "flow" grid describing the dynamic state
of each cell. Experimental results show that the proposed
system not only estimates 2-D BeV flow accurately but also
improves tracking performance of both dynamic and static
objects.
10010] In some embodiments, a method for determining
velocity of an object associated with a three-dimensional
(3D) scene may include: receiving two sets of 3D point
cloud data of the scene from two consecutive point cloud

US 202 1/0358296 Al
2

sweeps; aligning the two consecutive point cloud data sets
into the same coordinate frame; encoding data of the point
cloud data sets using a pillar feature network to extract
two-dimensional (2D) bird's-eye-view embeddings for each
of the point cloud data sets in the form of pseudo images,
wherein the 2D bird's-eye-view embeddings for a first of the
two point cloud data sets may include pillar features for the
first point cloud data set and the 2D bird' s-eye-view embed-
dings for a second of the two point cloud data sets may
include pillar features for the second point cloud data set;
and encoding the pillar features using a feature pyramid
network and performing a 2D optical flow estimation to
estimate the velocity of the object.

10011] In other embodiments, a system for determining
velocity of an object associated with a three-dimensional
(3D) scene, the system may include: a non-transitory
memory configured to store instructions; at least one pro-
cessor configured to execute the instructions to perform the
operations of: receiving two sets of 3D point cloud data of
the scene from two consecutive point cloud sweeps; aligning
the two consecutive point cloud data sets into the same
coordinate frame; encoding data of the point cloud data sets
using a pillar feature network to extract two-dimensional
(2D) bird's-eye-view embeddings for each of the point cloud
data sets in the form of pseudo images, wherein the 2D
bird's-eye-view embeddings for a first of the two point cloud
data sets may include pillar features for the first point cloud
data set and the 2D bird's-eye-view embeddings for a
second of the two point cloud data sets may include pillar
features for the second point cloud data set; and encoding the
pillar features using a feature pyramid network and perform-
ing a 2D optical flow estimation to estimate the velocity of
the object.

10012] In further embodiments, a system for determining
velocity of an object associated with a three-dimensional
(3D) scene, the system may include: a pillar feature network
to receive two sets of 3D point cloud data of the scene from
two consecutive point cloud sweeps, and to encode data of
the point cloud data to extract two-dimensional (2D) bird's-
eye-view embeddings for each of the point cloud data sets in
the form of pseudo images, wherein the 2D bird's-eye-view
embeddings for a first of the two point cloud data sets may
include pillar features for the first point cloud data set and
the 2D bird' s-eye-view embeddings for a second of the two
point cloud data sets may include pillar features for the
second point cloud data set; and a feature pyramid network
to encode the pillar features and performing a 2D optical
flow estimation to estimate the velocity of the object.

10013] The systems and methods may further include
applying a contextual network to use contextual information
to refine the velocity estimate. The context network may be
a feedforward CNN based on dilated convolutions.

10014] Receiving two sets of 3D point cloud data of the
scene may include receiving the first point cloud data set by
a first pillar feature network and receiving a second point
cloud data set by a second pillar feature network, wherein
the first point cloud data set represents the scene at a time t— 1
and the second point cloud data set represents the scene at
a time t subsequent to the time t-1.

10015] Encoding data of the point cloud data sets may
include voxelizing the point cloud data sets to render sur-
faces in the data sets onto a grid of discretized volume
elements in a 3D space to create a set of pillars.

Nov. 18, 2021

10016] The set of pillars may include a (D, P, N) shape
tensor in which P is the number of pillars and N denotes the
number of points per pillar.

10017] The systems and methods may further include
encoding voxel information from the voxelizing to extract
the features of the point cloud data sets. The systems and
methods may further include scattering the encoded features
back to their original pillar locations to create the bird's-
eye-view.

10018] The 2D optical flow estimation may include warp-
ing the pseudo image of the first point cloud data set to align
the pseudo image of the first point cloud data set with the
pseudo image of the second point cloud data set. The 2D
optical flow estimation further may include computing a cost
function of the warped pseudo image of the first point cloud
data set and the pseudo image of the second point cloud data
set, by identifying displacement of a feature from the first
image to the second image. The 2D optical flow estimation
further may include using the cost function to estimate the
flow of the object.

10019] Performing a 2D optical flow estimation to esti-
mate the velocity of the object may include aggregating
bird's eye view motion vectors to compute a single mean
velocity and co-variance for each obstacle cluster. A sample
may be weighted based on an occupancy probability of the
cell to which the sample belongs.

10020] The estimated velocity of the object may be a 2-D
flow vector for the object.

10021] The systems and methods may further include
using annotated track cuboids to auto-generate the 2D flow
in multiple scales. The systems and methods may further
include performing flow estimation only on labeled dynamic
objects and not performing flow estimation on non-labeled
obstacles or background objects.

10022] The systems and methods may be performed using
three or more sets of 3D point cloud data of the scene,
including aligning all of the point cloud data sets into the
same coordinate frame, encoding data of each of the point
cloud data sets using a pillar feature network to extract
two-dimensional (2D) bird's-eye-view embeddings for each
of the point cloud data sets comprising pillar features for
each point cloud data set, and encoding the pillar features
using a feature pyramid network and performing a 2D
optical flow estimation to estimate the velocity of the object.

10023] Encoding the pillar features using a feature pyra-
mid network further includes using 2D map information as
an additional channel input to the feature pyramid network.

10024] The systems and methods may further include
filtering the point cloud datasets using a ground height map,
wherein the filtering may include comparing data point
heights against ground height and discarding a data point
whose point height is not greater than the ground height at
the point's location.

10025] Other features and aspects of the disclosed tech-
nology will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, which illustrate, by way of example, the features
in accordance with embodiments of the disclosed technol-
ogy. The summary is not intended to limit the scope of any
inventions described herein, which are defined solely by the
claims attached hereto.

US 202 1/0358296 Al

BRIEF DESCRIPTION OF THE DRAWINGS

10026] The present disclosure, in accordance with one or
more various embodiments, is described in detail with
reference to the following figures. The figures are provided
for purposes of illustration only and merely depict typical or
example embodiments.
10027] FIG. 1 illustrates an example autonomous or semi-
autonomous vehicle with which embodiments of the dis-
closed technology may be implemented.
10028] FIG. 2 illustrates an example system for BeV flow
estimation in accordance with various embodiments of the
systems and methods disclosed herein.
10029] FIG. 3 illustrates an example architecture for BeV
flow estimation in accordance with various embodiments of
the systems and methods disclosed herein.
10030] FIG. 4 illustrates an example process for BeV flow
estimation in accordance with various embodiments of the
systems and methods disclosed herein.
10031] FIG. S is a diagram illustrating an example of
velocity estimation via self-supervised learning in accor-
dance with various embodiments.
10032] FIG. 6 illustrates an example process for velocity
estimation via self-supervised learning in accordance with
various embodiments.
10033] FIG. 7 is an example computing component that
may be used to implement various features of embodiments
described in the present disclosure.
10034] The figures are not exhaustive and do not limit the
present disclosure to the precise form disclosed.

DETAILED DESCRIPTION

10035] Embodiments of the systems and methods dis-
closed herein can provide a LIDAR-based scene motion
estimator decoupled from object detection. Embodiments
may be implemented to use two or more consecutive full
LIDAR point cloud sweeps as inputs, and encode each
LIDAR sweep into a 2-D BeV representation of feature
vectors using a pillar feature extractor. Then, the two or
more BeV feature grids are inputted to an optical flow
network. The final output is a 2-D flow vector for each cell.
Because of the computational efficiencies, embodiments
may be feasible for deployment to a robotic system, as
opposed to prior methods.
10036] Embodiments implement a 2-D BeV representation
over a 3-D or projective representation (depth image) for
multiple reasons. Primarily, for autonomous driving, motion
occurring in the x-y plane is important, particularly for
motion planning. Second, the Euclidean representation
allows developers to design the network architecture to
account for expected relative scene motion. Additionally, a
2-D representation provides computational efficiency com-
pared to 3-D approaches and allows the system to share the
encoded feature representation with an object detection
network.
10037] Embodiments may use a systematic end-to-end
method to effectively estimate the 2-D motion for an entire
scene in LIDAR BeV imagery, without prior removal of
ground returns. The system may leverage contextual knowl-
edge of the scene but still generalize it to properly estimate
the motion of unseen object types.
10038] The BeV motion results can be integrated into, and
used to improve, object tracking performance, not only in a
public dataset, but also in a real-world autonomous driving

Nov. 18, 2021

platform. Embodiments may also be implemented to esti-
mate ego vehicle motion (motion of the host/subject
vehicle), such as between frames, and may leverage super-
vision of the inertial navigation sensor.
10039] Embodiments disclosed herein estimate velocity in
2-D BeV grids by combining a Pillar Feature Network
(PFN) with an optical flow network. In some embodiments,
two consecutive point cloud sweeps are aligned into the
same coordinate frame; in other words, the coordinate of
LIDAR sweep at t— 1 will be transferred to the coordinate of
LIDAR sweep at t using the odometry information of the
robot. Next, two point clouds are encoded by the PFN to
build two BeV pseudo-images where each cell has a learned
embedding based on points that had fallen inside of it. Then
the two pseudo images are fed to a feature pyramid network
and an optical flow network for dense flow estimation.
Embodiments may also provide 2-D map information (e.g.,
BeV on- or off-road image) as an additional channel input to
the feature pyramid network. Sensor fusion can enhance
performance by using inputs from other data sources. For
example, embodiments may further leverage radar data as an
additional input channel to the feature pyramid network,
which may include range, range-rate (velocity) and occu-
pancy information from the radar return signal.
10040] The systems and methods disclosed herein may be
implemented for use in scene flow estimation for robotics,
autonomous vehicles and other automated technologies. In
the case of autonomous vehicles, embodiments may be
implemented for any of a number of different autonomous or
semi-autonomous vehicles and vehicle types to perform flow
estimation for surrounding objects or for the host (ego)
vehicle itself For example, the systems and methods dis-
closed herein may be used with cars, trucks, buses, con-
struction vehicles and other on- and off-road vehicles. These
can include vehicles for transportation of people/personnel,
materials or other items. In addition, the technology dis-
closed herein may also extend to other vehicle types as well.
An example Autonomous Vehicle (AV) in which embodi-
ments of the disclosed technology may be implemented is
illustrated in FIG. 1.
10041] FIG. 1 illustrates an example autonomous or semi-
autonomous vehicle with which embodiments of the dis-
closed technology may be implemented. In this example,
vehicle 100 includes a computing system 110, sensors 120,
AV control systems, 130 and vehicle systems 140. Vehicle
100 may include a greater or fewer quantity of systems and
subsystems and each could include multiple elements.
Accordingly, one or more of the functions of the technology
disclosed herein may be divided into additional functional or
physical components, or combined into fewer functional or
physical components. Additionally, although the systems
and subsystems illustrated in FIG. 1 are shown as being
partitioned in a particular way, the functions of vehicle 100
can be partitioned in other ways. For example, various
vehicle systems and subsystems can be combined in differ-
ent ways to share functionality.
10042] Sensors 120 may include a plurality of different
sensors to gather data regarding vehicle 100, its operator, its
operation and its surrounding environment. In this example,
sensors 120 include LIDAR 111, radar 112, or other like the
distance measurement sensors, image sensors 113, throttle
and brake sensors 114, 3D accelerometers 115, steering
sensors 116, and a GPS or other vehicle positioning system
117. One or more of the sensors 120 may gather data and

US 202 1/0358296 Al

send that data to the vehicle ECU or other processing unit.
Sensors 120 (and other vehicle components) may be dupli-
cated for redundancy.
10043] Distance measuring sensors such as LIDAR 111,
radar 112, JR sensors and other like sensors can be used to
gather data to measure distances and closing rates to various
external objects such as other vehicles, traffic signs, pedes-
trians, light poles and other objects. Jmage sensors 113 can
include one or more cameras or other image sensors to
capture images of the environment around the vehicle as
well as internal to the vehicle. Jnformation from image
sensors 113 can be used to determine information about the
environment surrounding the vehicle 100 including, for
example, information regarding other objects surrounding
vehicle 100. For example, image sensors 113 may be able to
recognize landmarks or other features (including, e.g., street
signs, traffic lights, etc.), slope of the road, lines on the road,
curbs, objects to be avoided (e.g., other vehicles, pedestri-
ans, bicyclists, etc.) and other landmarks or features. Jnfor-
mation from image sensors 113 can be used in conjunction
with other information such as map data or information from
positioning system 117 to determine, refined or verify
vehicle location.
10044] Throttle and brake sensors 114 can be used to
gather data regarding throttle and brake application by a
human or autonomous operator. Accelerometers 115 may
include a 3D accelerometer to measure roll, pitch and yaw
of the vehicle. Accelerometers 115 may include any com-
bination of accelerometers and gyroscopes for the vehicle or
any of a number of systems or subsystems within the vehicle
to sense position and orientation changes based on inertia.
10045] Steering sensors 116 (e.g., such as a steering angle
sensor) can be included to gather data regarding steering
input for the vehicle by a human or autonomous operator. A
steering sensor may include a position encoder monitor the
angle of the steering input in degrees. Analog sensors may
collect voltage differences that can be used to determine
information about the angle and turn direction, while digital
sensors may use an LED or other light source to detect the
angle of the steering input. A steering sensor may also
provide information on how rapidly the steering wheel is
being turned. A steering wheel being turned quickly is
generally normal during low-vehicle-speed operation and
generally unusual at highway speeds. Jf the driver is turning
the wheel at a fast rate while driving at highway speeds the
vehicle computing system may interpret that as an indication
that the vehicle is out of control. Steering sensors 116 may
also include a steering torque sensor to detect an amount of
force the driver is applying to the steering wheel.
10046] Vehicle positioning system 117 (e.g., GPS or other
positioning system) can be used to gather position informa-
tion about a current location of the vehicle as well as other
positioning or navigation information.
10047] Although not illustrated, other sensors 120 may be
provided as well. Various sensors 120 may be used to
provide input to computing system 110 and other systems of
vehicle 100 so that the systems have information useful to
operate in an autonomous, semi-autonomous or manual
mode.
10048] AV control systems 130 may include a plurality of
different systems/subsystems to control operation of vehicle
100. Jn this example, AV control systems 130 include
steering unit 136, throttle and brake control unit 135, sensor
fusion module 131, computer vision module 134, pathing

Nov. 18, 2021

module 138, and obstacle avoidance module 139. Sensor
fusion module 131 can be included to evaluate data from a
plurality of sensors, including sensors 120. Sensor fusion
module 131 may use computing system 110 or its own
computing system to execute algorithms to assess inputs
from the various sensors.
10049] Throttle and brake control unit 135 can be used to
control actuation of throttle and braking mechanisms of the
vehicle to accelerate, slow down, stop or otherwise adjust
the speed of the vehicle. For example, the throttle unit can
control the operating speed of the engine or motor used to
provide motive power for the vehicle. Likewise, the brake
unit can be used to actuate brakes (e.g, disk, drum, etc.) or
engage regenerative braking (e.g., such as in a hybrid or
electric vehicle) to slow or stop the vehicle.
10050] Steering unit 136 may include any of a number of
different mechanisms to control or alter the heading of the
vehicle. For example, steering unit 136 may include the
appropriate control mechanisms to adjust the orientation of
the front or rear wheels of the vehicle to accomplish changes
in direction of the vehicle during operation. Electronic,
hydraulic, mechanical or other steering mechanisms may be
controlled by steering unit 136.
10051] Computer vision module 134 may be included to
process image data (e.g., image data captured from image
sensors 113, or other image data) to evaluate the environ-
ment within or surrounding the vehicle. For example, algo-
rithms operating as part of computer vision module 134 can
evaluate still or moving images to determine features and
landmarks (e.g., road signs, traffic lights, lane markings and
other road boundaries, etc.), obstacles (e.g., pedestrians,
bicyclists, other vehicles, other obstructions in the path of
the subject vehicle) and other objects. The system can
include video tracking and other algorithms to recognize
objects such as the foregoing, estimate their speed, map the
surroundings, and so on.
10052] Pathing module 138 may be included to compute a
desired path for vehicle 100 based on input from various
other sensors and systems. For example, pathing module 138
can use information from positioning system 117, sensor
fusion module 131, computer vision module 134, obstacle
avoidance module 139 (described below) and other systems
to determine a safe path to navigate the vehicle along a
segment of a desired route. Pathing module 138 may also be
configured to dynamically update the vehicle path as real-
time information is received from sensors 120 and other
control systems 130.
10053] Obstacle avoidance module 139 can be included to
determine control inputs necessary to avoid obstacles
detected by sensors 120 orAV control systems 130. Obstacle
avoidance module 139 can work in conjunction with pathing
module 138 to determine an appropriate path to avoid a
detected obstacle.
10054] Vehicle systems 140 may include a plurality of
different systems/subsystems to control operation of vehicle
100. Jn this example, AV control systems 130 include
steering system 121, throttle system 122, brakes 123, trans-
mission went 24, electronic control unit (ECU) 125 and
propulsion system 126. These vehicle systems 140 may be
controlled by AV control systems 130 in autonomous, semi-
autonomous or manual mode. For example, in autonomous
or semi-autonomous mode, AV control systems 130, alone or
in conjunction with other systems, can control vehicle
systems 140 to operate the vehicle in a fully or semi-

US 202 1/0358296 Al

autonomous fashion. This may also include an assist mode
in which the vehicle takes over partial control or activates
ADAS controls to assist the driver with vehicle operation.
10055] Computing system 110 in the illustrated example
includes a processor 106, and memory 103. Some or all of
the functions of vehicle 100 may be controlled by computing
system 110. Processor 106 can include one or more GPUs,
CPUs, microprocessors or any other suitable processing
system. Processor 106 may include one or more single core
or multicore processors. Processor 106 executes instructions
108 stored in a non-transitory computer readable medium,
such as memory 103.
10056] Memory 103 may contain instructions (e.g., pro-
gram logic) executable by processor 106 to execute various
functions of vehicle 100, including those of vehicle systems
and subsystems. Memory 103 may contain additional
instructions as well, including instructions to transmit data
to, receive data from, interact with, and/or control one or
more of the sensors 120, AV control systems, 130 and
vehicle systems 140. In addition to the instructions, memory
103 may store data and other information used by the vehicle
and its systems and subsystems for operation, including
operation of vehicle 100 in the autonomous, semi-autono-
mous or manual modes.
10057] Although one computing system 110 is illustrated
in FIG. 1, in various embodiments multiple computing
systems 110 can be included. Additionally, one or more
systems and subsystems of vehicle 100 can include its own
dedicated or shared computing system 110, or a variant
thereof Accordingly, although computing system 110 is
illustrated as a discrete computing system, this is for ease of
illustration only, and computing system 110 can be distrib-
uted among various vehicle systems or components.
10058] Vehicle 100 may also include a wireless commu-
nication system (not illustrated) to communicate with other
vehicles, infrastructure elements, cloud components and
other external entities using any of a number of communi-
cation protocols including, for example, V2V V21 and V2X
protocols. Such a wireless communication system may
allow vehicle 100 to receive information from other objects
including, for example, map data, data regarding infrastruc-
ture elements, data regarding operation and intention of
surrounding vehicles, and so on. A wireless communication
system may also allow vehicle 100 to transmit information
to other objects. In some applications, computing functions
for various embodiments disclosed herein may be performed
entirely on computing system 110, distributed among two or
more computing systems 110 of vehicle 100, performed on
a cloud-based platform, performed on an edge-based plat-
form, or performed on a combination of the foregoing.
10059] The example of FIG. 1 is provided for illustration
purposes only as one example of vehicle systems with which
embodiments of the disclosed technology may be imple-
mented. One of ordinary skill in the art reading this descrip-
tion will understand how the disclosed embodiments can be
implemented with this and other vehicle platforms.
10060] Embodiments for deep learning for image percep-
tion utilize synthetic data, such as data generated program-
matically. Synthetic data may include computer-generated
data created to mimic real data. Embodiments may be
implemented to disentangle the components of the data set,
and perform multiple iterations.
10061] FIG. 2 illustrates an example system for BeV flow
estimation in accordance with various embodiments of the

Nov. 18, 2021

systems and methods disclosed herein. Referring now to
FIG. 2, the example system includes a LIDAR system 230,
a point cloud generator 240 (which may be part of LIDAR
system 230, a flow estimation module 250, vehicle control
modules 260, and vehicle systems 268. LIDAR system 230
includes light emitters and detectors to collect information
surrounding the vehicle (or other robotics or automated
system). In operation, LIDAR system 230 generates light
beams, such as laser light beams, that are emitted in an arc
up to 3600 surrounding the vehicle. The transmitted light is
reflected by objects in the environment of the vehicle and the
reflections are returned to photodetectors of LIDAR system
230 where they are captured. The reflections are converted
into electrical signals by any array of photodetectors, which
can be implemented as photodiodes, avalanche photodiodes
or other photodetectors systems. Timing information can be
used to measure the time-of-flight of the optical signal from
its source at LIDAR system 232 the object off of which it
bounces and back to the photodetector where its reflection is
received. This time-of-flight can be used to measure the
distance from the vehicle (from LIDAR system 230) to the
object. A 3D LIDAR system, therefore, can capture two-
dimensional data using photodetectors arranged in rows and
columns and the third dimension, distance, determined
based on the time-of-flight. LIDAR system 230 can be
implemented using any of a number of different LIDAR
technologies including electromechanical LIDAR and solid-
state LIDAR. LIDAR system 230 can be implemented and
configured to provide the system with 360° of visibility
about the subject vehicle. LIDAR system 230 can be imple-
mented with a relatively high degree of accuracy (e.g., on
the order of +1-2 cms).

10062] Data from LIDAR system 230 can be used to
generate three-dimensional maps and point clouds that can
be used by the autonomous vehicle or other robotic or
automated system to navigate it surrounding environment.
The LIDAR system can provide information to determine
the bounds of the lane, the presence and location of sur-
rounding vehicles, pedestrians and other objects, the pres-
ence location of traffic signals, and so on. In addition to
detecting the presence and location of objects, information
from LIDAR system 230 can also be used to track obstacles
and other objects like vehicles, pedestrians, and so on.

10063] Data from LIDAR system 230 can be supplied to
point cloud generator 240, but in some embodiments, point
cloud generator 240 can be implemented as part of LIDAR
system 230. Point cloud generator 240 can include a pro-
cessing system or other circuit implemented to generate
point clouds from the data collected sensors. Point clouds
can comprise a set of 3D points corresponding to part of a
scene or a whole scene and can be compensated by the
vehicle motion during the accumulation period of the frame.
Each frame can be instantaneously captured (such as, e.g.,
using flash lidar or a global shutter camera) or accumulated
over a full rotation of a sensor. This data can include image
sensor data from an array of image sensors at LIDAR system
230 as well as range data. Point cloud generator 240 can be
implemented to collate the information collected from the
image sensors to generate the three-dimensional point cloud
map. For example, point cloud generator few hundred and
40 can be configured to stitch together image information
collected from the rows and columns of image sensors of
LIDAR system 230 along with the range information for
each pixel. Deep learning algorithms can be trained and used

US 202 1/0358296 Al

to label point cloud data collected by LIDAR system 230.
The point cloud can be stored in any of a number of different
point cloud file formats such as those used for 3D modeling.
10064] In operation, two or more point clouds (e.g., two,
three, four or more point clouds) are provided to flow
estimation module 250. In this example, flow estimation
module 250 includes a processor 254 and memory 258.
Processor 254 can include one or more GPUs, CPUs,
microprocessors or any other suitable processing system.
Processor 254 may include one or more single core or
multicore processors. Processor 254 executes instructions
256 stored in a non-transitory computer readable medium,
such as memory 258.
10065] Memory 258 may contain data as well as instruc-
tions (e.g., program logic) executable by processor 254 to
perform flow estimation. These instructions may also
include instructions 256 to execute various functions of
vehicle 100, including those of vehicle systems and subsys-
tems. Memory 258 may contain additional instructions 256
as well, including instructions to transmit data to, receive
data from, interact with, and/or control one or more of the
sensors 120, AV control systems, 130 and vehicle systems
140. In addition to the instructions, memory 258 may store
data and other information used by the vehicle and its
systems and subsystems for operation, including operation
of vehicle 100 in the autonomous, semi-autonomous or
manual modes.
10066] Although one flow estimation module 250 is illus-
trated in FIG. 2, in various embodiments flow estimation
modules 250 can be included. In some embodiments, some
or all of the functions of flow estimation module 250 may be
implemented using a vehicle processing unit including, for
example, an ECU or computing system 110.
10067] Instructions 256 in memory 258 can be included to
cause processor 254 to estimate flow using the point cloud
data. Particularly, in one embodiment, the two point clouds
are encoded by a pillar feature network to generate two-
dimensional bird's-eye-view pseudo-images in which each
cell includes a learned embedding based on points falling
within that cell. Instructions 256 in memory 258 can be
further configured to process the BeV pseudo-images using
an optical flow network for flow estimation.
10068] The output of flow estimation module 250 can
include flow estimates for one or more objects surrounding
the vehicle. These flow estimates can include, for example,
velocity and trajectory information for other vehicles, pedes-
trians, and other objects around which the subject vehicle
intends to navigate. This flow estimation information can be
provided to one or more of a number of vehicle control
modules 260 for vehicle control.
10069] The flow estimates generated by flow estimation
module 250 may be used by any of a number of vehicle
systems such as for autonomous driving, obstacle avoidance,
assisted driving, driver warnings or other alerts, and so on.
The flow estimates in this example are provided to various
vehicle control modules 260 that can control the vehicle
fully or partially in the can provide appropriate warnings and
alerts to the driver. For example, in terms of the example
vehicle described with reference to FIG. 1, this information
can be provided to computing system 110 for routing,
obstacle avoidance, assisted driving, and other functions.
10070] In the illustrated example, include autonomous
vehicle (AV) control module 266, advanced driver assis-
tance systems (ADAS) module 264 and driver alert module

Nov. 18, 2021

262. In other embodiments, other vehicle control modules
260 may be included. Autonomous vehicle control module
266 can use the estimated flow information to operate the
vehicle to avoid detected objects based on their estimated
flow (e.g., given their estimated velocity and trajectory).
This can include operating vehicle systems 268 such as
throttle, steering and braking systems. ADAS module 264
can use the information for ADAS assistance systems avail-
able on a given vehicle to execute ADAS maneuvers
depending on the flow control information. For example,
ADAS module 264 can provide instructions to a vehicle
braking system of vehicle systems 268 to initiate emergency
braking to avoid a collision with an object. As another
example, ADAS module 264 can provide instructions to a
steering system to execute object avoidance maneuvers.
10071] Flow estimation module 250 may also activate
driver alert module 262 to provide one or more alerts to the
driver of the subject vehicle. These alerts may include, for
example, audible, visual or tactile alerts to provide alerts,
data or other information to the driver in response to the
estimated flow information. This information might include,
for example, an alert to the driver of a wrong way vehicle,
a vehicle on a collision course with the subject vehicle or
other condition of which the driver of the subject vehicle
should be aware.
10072] FIG. 3 illustrates an example architecture for BeV
flow estimation in accordance with various embodiments of
the systems and methods disclosed herein. FIG. 4 illustrates
an example process for BeV flow estimation in accordance
with various embodiments of the systems and methods
disclosed herein. Referring now to FIGS. 3 and 4, an
example process and architecture are now described. This
example includes a pillar feature network 320, feature
pyramid 340 and an optical flow network 350. In this
example, the system includes two pillar feature networks
320 and two feature pyramids 340. In other implementa-
tions, a greater quantity of pillar feature networks 320 and
feature pyramids 340 may be included to process a greater
number of point clouds.
10073] At operation 422, pillar feature network 320
receives a point cloud from the vehicle LIDAR unit and
operates on the data to extract a two-dimensional Birds-eye
View pseudo-image from the point cloud. In this example, a
first point cloud 314 is received by one pillar feature network
320 and a second point cloud 312 is received by the other
pillar feature network 320. The second point cloud 312
represents the scene surrounding the vehicle at a time
subsequent to the time t-1 of the scene represented by the
first point cloud 314. In some embodiments, more than two
point clouds can be used. Pillar feature network 320 in this
example includes a voxelizer 322, a 3D classification and
segmentation network 324 and a scatterplot generator 326.
10074] In some embodiments, the point clouds can be
filtered against a 2-D ground height map to reduce the data
set. For example, a filtering algorithm can check to deter-
mine whether a point's z value (height) is greater than the
ground height at that point's location, or greater than the
ground height plus a predetermined margin. If the point's
height is not greater than the ground height (or height plus
margin), the point can be discarded.
10075] At operation 424, voxelizer 322 may be imple-
mented to receive 3D surfaces detected by the LIDAR
system and render them onto a grid of discretized volume
elements in a 3D space. Avoxel comprises a volume element

US 202 1/0358296 Al
7

(e.g., a cube) representing a value of a 3D surface or solid
geometric element at a point in the 3D space. In one
embodiment, in operation, a processing engine receives a
surface from the LIDAR system for voxelization. This can
be implemented, for example, using processor 254. In
another embodiment, the processing engine may be a dedi-
cated hardware engine such as a specialized hardware unit in
a GPU or an application specific integrated circuit (ASIC)
configured to implement the voxelization algorithm. The
processing engine maps the surface onto a plurality of
voxels, which may be implemented as a grid (e.g., regularly
spaced) of volumetric elements, such as cubic volumes
arranged in a 3D array oriented along x, y, and z axes. The
processing engine may then generate a value for each voxel
in the plurality of voxels that intersects with the surface. In
some embodiments, the value may be a scalar value, which
may represent a value such as opacity (or transparency) for
the voxel, or a vector value, which may represent, for
example, a color for the voxel.
10076] In some embodiments, voxelizer 322 discretizes
the point clouds into an evenly spaced grid in a plane (e.g.,
in the x-y plane) creating a set of pillars. The point cloud
features may be structured as a (D, P, N) shape tensor in
which P is the number of pillars, N denotes the number of
points per pillar. In the first dimension D=9 dimensional, the
first four values denote coordinates x, y, z and reflectance r.
The next five values denote the distances to the arithmetic
mean x, y, z of all points in a pillar and the offset xp, y
from the pillar center. Otherwise, the pillars with too few
points may be treated as empty pillars or omitted from
processing, for reasons of computational efficiency.
10077] At operation 426, 3D classification and segmenta-
tion network 324 encodes the voxel information. In some
embodiments, 3D classification and segmentation network
324 may include a deep learning neural network that oper-
ates on the voxelized features to encode the voxel informa-
tion and extract the features of the point cloud data sets. In
some embodiments a feature is processed by a simplified
version of PointNet to encode to shape (C, P, N) and further
encoded to (C, P) by a max operation over the channels. One
example of a pillar feature extractor that may be used is
described by A. H. Lang, S. Vora, H. Caesar, L. Zhou, J.
Yang, and 0. Beijbom, in "Pointpillars: Fast encoders for
object detection from point clouds," in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 12 697-12 705.
10078] In some embodiments, additional inputs to the
voxelizer and classification and segmentation network may
include sampled colors, semantic class and feature vectors of
the point projected onto an overlapping camera frame. This
may again provide a measure of sensor fusion using inputs
from various sensors.
10079] At operation 428, scatterplot generator 326 may be
implemented to operate on the encoded features from 3D
classification and segmentation network 324. Scatterplot
generator 326 may be configured to scatter the encoded
features back to their original pillar locations to create a
pseudo-image tensor of shape (C, H, W), where H and W
indicate the height and width of the pseudo-image. This
pseudo-image tensor is the Birdseye view 330.
10080] As indicated above, two pillar feature networks
320 are provided to operate on two separate point clouds
312, 314, which may be consecutive in time. This results in
two birds-eye view images 332, 334 having 3-D embeddings

Nov. 18, 2021

(i.e., pillar features), one representing the first point cloud
(e.g., the point cloud at time t-1) and one representing the
second point cloud (e.g., the point cloud at time t). Where
more than two point clouds are used to perform the flow
estimation, a corresponding quantity of pillar feature net-
works can be provided to operate on the point clouds and
generate birds-eye view images for each point cloud.
10081] To associate the 3-D embeddings (i.e., pillar fea-
tures) for each 2-D BeV grid 332, 334, the system may be
configured to treat this problem as a 2-D optical flow
estimation in BeV. Accordingly, model architecture param-
eters such as receptive field and correlation layer parameters
may be used to account for the maximum relative motion
that would be expected to be encountered between consecu-
tive LIDAR sweeps, given the time delta between frames,
grid resolution, and typical vehicle speeds. For example
assume in one application that the maximum velocity of a
vehicle encountered might be 30 mIs. Thus for oncoming
traffic, it may be appropriate to account for a 60 m/s closing
rate. Further assume a time between frames of 0.1 seconds.
With such parameters, the system may be configured to
account for up to 6 m of motion between frames. If the cell
size is 0.25 m, then the corresponding cells between images
can be +1-24 cells in position difference. Therefore, the
network is ideally able to essentially search across this
resolution. For example, +1-24 cells at the full resolution
would correlate to +1-6 cells at the ¼ resolution.
10082] At operation 430, the pillar features are further
encoded via a feature pyramid network 340. Feature pyra-
mid network 340 may be implemented as a feature extractor
for object detection operating on a pyramid of features.
Feature pyramid network 340 may include bottom-up and
top-down pathways. The bottom-up pathway is the usual
convolutional network for feature extraction. Moving up the
bottom-up pathway, the spatial resolution decreases, but the
semantic value for each layer increases. Moving down the
top-down pathway, the spatial resolution increases, but the
semantic value for each layer decreases.
10083] Embodiments may also provide 2-D map informa-
tion, such as BeV on- or off-road images from a map
database as an additional channel input to the feature pyra-
mid network. Sensor fusion can enhance performance by
using inputs from other data sources as well. For example,
embodiments may further leverage radar data as an addi-
tional input channel to the feature pyramid network. This
may include range, range-rate (velocity) and occupancy
information from the radar return signal.
10084] The features extracted by feature pyramids 340 are
provided to optical flow network 350. At operation 432, the
first image (the image at time t-1) is warped by warping
module 352. Warping module 352 adjusts the first image to
align with the subsequent image (the image at time t) so that
the features can be appropriately compared. Where more
than two images are used, warping can be applied to all
images corresponding to the time prior to t to align them
with the most current image (the image at time t) so that the
features can be compared across all images.
10085] It should be noted that warping can be performed
prior to running the network or within the network, and that
the outputs may be different depending on where warping is
performed. For example, in some embodiments if an exter-
nal motion signal from an inertial navigation system is
available, the pillars can be scattered to the same "global"
positions in two frames such that the network is only

US 202 1/0358296 Al

estimating dynamic motion (i.e., static cells will output
motion vectors of zero). In other embodiments, the system
can be configured to center each pseudo image about the
corresponding vehicle position for the cloud (for example,
the t-1 image may be centered at (1,1) in world coordinates
and the t image centered at (2,2) in world coordinates). The
result of this is for cells in the output that correspond to
non-moving objects, the estimated motion vector for that
cell would be the host vehicle's ego-motion (i.e., self-
motion) relative to that cell. Another step, such as Random
Sample Consensus (RANSAC) for example, may be imple-
mented, or another network head used to estimate the dx, dy,
d-theta of the host vehicle between the frames. Embodi-
ments may further be configured to use this approach to
supervise with the network during training with the outputs
of the inertial navigation system for free ground truth data.
10086] At operation 434, the warped first image (and
previous images, where applicable) and the second image
are compared by a cost volume module 354 to determine
differences between the images, where the matching cost, or
cost function, is defined as the correlation between the two
feature maps. Particularly, cost volume module 354 may be
configured to identiFy displacement of a feature from the
first image to the second image. The cost volume block may
be implemented to use distance metrics such as correlation,
normalized cross correlation and cosine distance to compare
a candidate alignment. This information can be provided to
flow estimator module 356 which, at operation 436 uses
these differences to estimate the flow of the object. In some
embodiments, the final output is a 2-D flow vector for each
cell.
10087] At operation 438, context network 358 may be
applied to exploit contextual information for additional
refinement. The context network may be implemented as a
feedforward CNN. More particularly, in some embodiments
this is implemented as a feedforward CNN based on dilated
convolutions, having 7 convolutional layers with kernel size
3.

10088] In some embodiments, the flow block (comprising
warping, cost volume, and flow estimation) can be imple-
mented to occur at multiple working resolutions and can be
chained together. For example, in the above example, if the
true motion at full resolution is +23 cells, then the ¼
resolution flow block might estimate +5 cells (i.e., 20 cells
of motion at full resolution) and then warp the image so that
3 cells of motion are leftover. Then the ½ resolution might
estimate +2 cell (4 cells of motion at full resolution) and
warp so that 1 cell of motion is leftover. The full resolution
might estimate —1 cell, so that the total motion estimated is
+23. Thus each level may be responsible for estimating the
residual or leftover motion. This can effectively narrow the
search space, thus enabling computational efficiency in the
network as the search space increases quadratically with
search radius.

10089] Some embodiments may use annotated track
cuboids to auto-generate the groundtruth 2-D BeV flow in
multiple scales. The system may be configured to assume
that only labeled dynamic objects such as cars, bicycles and
pedestrian, can have a valid velocity, and that all non-labeled
obstacles and background should have zero velocity. The
system may be configured to determine the ground truth
flow of each annotated object by leveraging the fact that
each cuboid has a unique identifier through the entire snippet
sequence. Therefore, the system can use the difference in
poses divided by the time elapsed between frames to deter-
mine the instantaneous ground truth velocity for each
cuboid.

Nov. 18, 2021

10090] Let denote f01 the flow field at the lth pyramid level
predicted by the network with learnable parameters B and
are the corresponding groundtruth. The system can apply a
multi-scale training loss:

L

£ =
-

1=10

10091] where 112 is the L2 norm of a vector, a 1 in the
training loss are set to be:

10092] a 6 0.32,
10093] a 5 0.08,
10094] a 4 0.02,
10095] a 3 0.01, and
10096] a 2 0.005.

10097] In various embodiments other techniques can be
used for final estimation. For example one embodiment
aggregates the BeV grid motion vectors as estimated by the
above-described method of FIG. 4 to compute a single mean
velocity and co-variance per obstacle cluster. This may be
accomplished by sampling the set of BeV motion cells
occupied by the cluster.
10098] Another embodiment uses the same approach to
aggregate the BeV grid motion vectors to a mean per cluster,
except each sample is weighted based on the occupancy
probability of the cell. This embodiment is referred to as the
FlowPillars method in Tables 1 and 2, below. The velocity
vector and associated confdence per cell can be used as the
observation prior for filtering the cell's velocity over time,
such as with a dynamic occupancy grid.
10099] Embodiments disclose herein may not only effec-
tively estimate flow in 2D BeV grids but may also improve
performance in both dynamic and static object tracking.
Experimental results have shown that disclosed embodi-
ments improve the performance of dynamic objects tracking
using either the public dataset or a self-collected dataset.
Additionally, experimental results establish that the pro-
posed system is feasible for use in autonomous driving
implementations, delivering strong improvement in generic
obstacle tracking over conventional solutions.
10100] The quantitative and qualitative results show
strong enhancements to tracking performance using the
velocity estimation approaches described above as set out in
Tables 1 and 2. In particular, mean and worst case perfor-
mance are improved across most object class types. In the
Tables, the baseline approach uses a nearest neighbors
(mahalanobis distance metric) based data association
approach and centroid filtering.

TABLE 1

Mean Track Velocity Error In M/S

Dynamic
Ground Truth Categoly; Base- Occupancy
Integration Technique line Grid FlowPillars

Static Background Obstacles 0.839 0.848 0.480
Pedestrian and Cyclist 0.772 0.523 0.641
Obstacles observed stationary (like 0.861 0.512 0.059
parked car, excluding static
background)

US 202 1/0358296 Al
;sJ

TABLE 1-continued

Mean Track Velocity Error In M/S

Dynamic
Ground Truth Categoly; Base- Occupancy
Integration Tecimique line Grid FlowPillars

Slow Moving Obstacles (0, 3] rn/s 0.566 0.570 0.666
Fast Moving Obstacles [3, c) rn/s 2.396 2.371 2.036

TABLE 2

95th Highest Percentile Track Velocity Error In MIS

Dynamic
Ground Truth Categoly; Base- Occupancy
Integration Tecimique line Grid FlowPillars

Static Backgroimd Obstacles 3.993 3.803 2.322
Pedestrian and Cyclist 3.411 1.621 1.446
Obstacles observed stationary 3.826 1.796 0.151
(like parked car, excluding
static background)
Slow Moving Obstacles (0, 3] m/s 2.117 1.709 1.560
Fast Moving Obstacles [3, c) m/s 15.188 11.490 7.468

10101] In some embodiments, systems and methods may
be implemented to perform bird's eye view based velocity
estimation via self-supervised learning, and the scene flow
estimation system may be trained using self-supervised
losses. Self-supervised loss may computed using interac-
tions between different outputs of the scene flow estimation
system (e.g., forward and backward flow estimates for
multiple pillar features (and at different levels of the feature
pyramid)) so that data labels or feature annotations are not
needed. Self-supervised learning may be accomplished via a
proxy-loss that does not require ground truth labels for the
training data. Embodiments may be confgured to minimize
the "distance" between the two or more subsequent feature-
maps that are derived directly from the raw data, conditioned
on the flow predicted. Based on this, the system learns to
predict a BeV flow estimator that is consistent with the
motion of BeV point-cloud features, without needing ground
truth cuboid trajectories/labels.

10102] In various embodiments, corresponding pillar fea-
tures defined by forward and backward optical flow can be
compared and the result used as supervision for the training.
Some implementations may be confgured to learn convo-
lutional flow estimations without using training data that is
manually annotated. The training data for the model may be
autonomously labelled by identifying and exploiting the
relations or correlations among multiple inputs.

10103] In some implementations, a data aggregator can
collect and aggregate data associated with the bird's eye
view embeddings. Dynamic and static masks can be used for
feature selection and the flows for selected features evalu-
ated in two directions to train the estimation model. The
training data can be stored in a training data repository, and
may include values for the flow being predicted by the
model.

10104] FIG. S is a diagram illustrating an example of
velocity estimation via self-supervised learning in accor-
dance with various embodiments. FIG. 6 illustrates an
example process for velocity estimation via self-supervised
learning in accordance with various embodiments.

Nov. 18, 2021

10105] With reference now to FIGS. S and 6, This example
includes a pillar feature network 520, and an optical flow
network 540. In this example, the system includes two pillar
feature networks 520 and two flow networks 540. This
example also includes an aggregator 552, a dynamic mask
554 and a static mask 556. Pillar feature network 520 may
be implemented similarly to pillar feature network 320, and
as with the example of FIG. 3, pillar feature network 520
includes a voxelizer 322, a 3D classification and segmenta-
tion network 324 and a scatterplot generator 326. In various
embodiments, Voxelizer 322, 3D classification and segmen-
tation network 324 and scatterplot generator 326 perform
similar functions as described above to arrive at two birds-
eye view images 531, 532 having BeV embeddings (e.g.,
birds-eye view images 332, 334), one representing the first
point cloud (e.g., the point cloud at time t-1) and one
representing the second point cloud (e.g., the point cloud at
time t).
10106] Accordingly, at operation 622, the system encodes
data of the point cloud data sets using pillar feature network
520 to extract two-dimensional (2D) bird's-eye-view
embeddings for each of the point cloud data sets in the form
of pseudo images. In some embodiments, 2D bird's-eye-
view embeddings for a first of the two point cloud data sets
may include pillar features for the first point cloud data set
and the 2D bird's-eye-view embeddings for a second of the
two point cloud data sets may include pillar features for the
second point cloud data set.
10107] At operation 624 the embeddings of the two birds-
eye view images 531, 532 are aggregated to train classifiers
for the features. Aggregator 552 may be configured to group
similar features (in the form of pillars) together and repre-
sent them as a single feature for more efficient processing.
This may allow the system to approximate the original
problem with fewer-states in the form of an aggregated
problem. The system may then solve the aggregated problem
and "extend" its cost function to the original data set.
10108] Aggregator 552 may be implemented as a classifier
to classify the pillar features. Aggregator 552 may be, for
example, a probabilistic boosting tree, support vector
machine, or other machine learning classifier. Other classi-
fiers may include, for example, single class or binary clas-
sifiers, cascaded classifiers, hierarchal classifiers, multi-
class classifiers, and soon. A combination of classifiers may
also be used. Multi-class classifiers may include, for
example, Classification And Regression Tree (CART),
K-nearest neighbor, neural network and mixture models.
10109] Aggregator 552 receives pillar features from points
of the multiple BeV images. An input vector of aggregator
552 may include some or all features directly from two
birds-eye view images 531, 532 having BeV embeddings
such that pillar features from the two (or more) BeV images
are aggregated. In the example of FIG. 5, aggregator 552
receives all of the pillar features from the various points of
all BeV images. In other embodiments, fewer than all of the
pillar features from bird's-eye view images 531, 532 may be
used.
10110] At operation 626, the aggregated features are
masked using a static mask 556, a dynamic mask 554, or
both. Mask sizes may be fixed (e.g., based on BeV size or
anticipated number of feature pillars), or sizing may
dynamic to accommodate changing quantities of feature
pillars. Dynamic mask 554 can be configured such that the
system generates the masking pattern every time (or every

US 202 1/0358296 Al
10

x-number of times) a new data set is fed into the model.
Static mask 556, on the other hand, may remain fixed for
each training set.
10111] A dynamic mask 554 may be implemented as a
dynamic feature mask that is configured to identify and
mask redundant features. Masking may also be performed
based on importance of the features. If a feature's impor-
tance increases or decreases (e.g., independently, or relative
to other features), the mask may be updated accordingly.
Previously unimportant features that are now important may
be unmasked and features that have lost importance may
now be masked.
10112] At operation 628, flow nets 541 and 542 perform
forward and backward flow estimation. Here, two flow nets
541, 542 are provided such that flows in both the forward
and the backward directions from the two bird's-eye view
image embeddings can be calculated. In this example, flow
net 541 calculates the flow of the feature pillars from image
one to image two while flow net 542 calculates the flow of
the feature pillars from image two to image one.
10113] Although not illustrated, prior to processing with
flow nets 541 and 542, the pillar features may be further
encoded via a feature pyramid network (e.g., feature pyra-
mid network 340). Feature pyramid networks may be imple-
mented as a feature extractor for object detection operating
on a pyramid of features, and may include multiple levels at
different resolutions with bottom-up and top-down pathways
through the levels. The bottom-up pathway is the usual
convolutional network for feature extraction. Moving up the
bottom-up pathway, the spatial resolution decreases, but the
semantic value for each layer increases. Moving down the
top-down pathway, the spatial resolution increases, but the
semantic value for each layer decreases.
10114] Embodiments may be configured to perform self-
supervised learning for multiple hierarchical resolutions. In
some embodiments, self-supervised learning is performed
by minimizing losses for each hierarchical resolution 1.
Flow nets 541, 542 may be implemented to estimate the flow
based on a cost function. Flow net 541 can determine the
flow from one to two, f11 2, using the normal function:

E 11+f1 21-E21 2=O.

10115] And, flow net 542 can determine the flow from two
to one, f12 1, using the normal function:

E 21+f2 11-E11 2=O.

10116] The flow from one to two and two to one can
provide, respectively:

10117] These can be combined as:

If1 dJ+f d,J
- 2-1

10118] Where s represents static objects and d represents
dynamic objects.
10119] At operation 630, the system performs self-super-
vised learning based on the flow estimates. As noted, self-
supervised learning is performed by minimizing the cost
function for each of a plurality of hierarchical resolutions 1,
which can be derived from a feature pyramid. The system
can be configured to perform a check of the consistency
between the forward and backward flows and compute a
consistency loss. The system may also compute bidirec-

Nov. 18, 2021

tional image-based losses by comparing BeV image 531 to
backward warped BeV image 532 and BeV image 532 to
backward warped BeV image 531. This may be performed,
in some embodiments, using bilinear sampling. The data
loss can be computed based on the forward-backward con-
sistency and the warped images for each point in the images.
Accordingly, the system may be configured to train the
machine learning model using a minimal or reduced training
data set.
10120] Where embodiments of the system are imple-
mented in whole or in part using software, these software
elements can be implemented to operate with a computing or
processing component capable of carrying out the function-
ality described with respect thereto. One such example
computing component is shown in FIG. 7. Various embodi-
ments are described in terms of this example-computing
component 700. After reading this description, it will
become apparent to a person skilled in the relevant art how
to implement the application using other computing com-
ponents or architectures.
10121] Referring now to FIG. 7, computing component
700 may represent, for example, computing or processing
capabilities found within a self-adjusting display, desktop,
laptop, notebook, and tablet computers. They may be found
in hand-held computing devices (tablets, PDA's, smart
phones, cell phones, palmtops, etc.). They may be found in
workstations or other devices with displays, servers, or any
other type of special-purpose or general-purpose computing
devices as may be desirable or appropriate for a given
application or environment. Computing component 700
might also represent computing capabilities embedded
within or otherwise available to a given device. For
example, a computing component might be found in other
electronic devices such as, for example, portable computing
devices, and other electronic devices that might include
some form of processing capability.
10122] Computing component 700 might include, for
example, one or more processors, controllers, control com-
ponents, or other processing devices. Processor 704 might
be implemented using a general-purpose or special-purpose
processing engine such as, for example, a microprocessor,
controller, or other control logic. Processor 704 may be
connected to a bus 702. However, any communication
medium can be used to facilitate interaction with other
components of computing component 700 or to communi-
cate externally.
10123] Computing component 700 might also include one
or more memory components, simply referred to herein as
main memory 708. For example, random access memory
(RAM) or other dynamic memory, might be used for storing
information and instructions to be executed by processor
704. Main memory 708 might also be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
704. Computing component 700 might likewise include a
read only memory ("ROM") or other static storage device
coupled to bus 702 for storing static information and instruc-
tions for processor 704.
10124] The computing component 700 might also include
one or more various forms of information storage mecha-
nism 710, which might include, for example, a media drive
712 and a storage unit interface 720. The media drive 712
might include a drive or other mechanism to support fixed or
removable storage media 714. For example, a hard disk

US 202 1/0358296 Al
11

drive, a solid-state drive, a magnetic tape drive, an optical
drive, a compact disc (CD) or digital video disc (DVD) drive
(R or RW), or other removable or fixed media drive might
be provided. Storage media 714 might include, for example,
a hard disk, an integrated circuit assembly, magnetic tape,
cartridge, optical disk, a CD or DVD. Storage media 714
may be any other fixed or removable medium that is read by,
written to or accessed by media drive 712. As these
examples illustrate, the storage media 714 can include a
computer usable storage medium having stored therein
computer software or data.
10125] In alternative embodiments, information storage
mechanism 710 might include other similar instrumentali-
ties for allowing computer programs or other instructions or
data to be loaded into computing component 700. Such
instrumentalities might include, for example, a fixed or
removable storage unit 722 and an interface 720. Examples
of such storage units 722 and interfaces 720 can include a
program cartridge and cartridge interface, a removable
memory (for example, a flash memory or other removable
memory component) and memory slot. Other examples may
include a PCMCIA slot and card, and other fixed or remov-
able storage units 722 and interfaces 720 that allow software
and data to be transferred from storage unit 722 to comput-
ing component 700.
10126] Computing component 700 might also include a
communications interface 724. Communications interface
724 might be used to allow software and data to be trans-
ferred between computing component 700 and external
devices. Examples of communications interface 724 might
include a modem or softmodem, a network interface (such
as Ethernet, network interface card, IEEE 802.XX or other
interface). Other examples include a communications port
(such as for example, a USB port, IR port, R5232 port
Bluetooth® interface, or other port), or other communica-
tions interface. Software/data transferred via communica-
tions interface 724 may be carried on signals, which can be
electronic, electromagnetic (which includes optical) or other
signals capable of being exchanged by a given communi-
cations interface 724. These signals might be provided to
communications interface 724 via a channel 728. Channel
728 might carry signals and might be implemented using a
wired or wireless communication medium. Some examples
of a channel might include a phone line, a cellular link, an
RF link, an optical link, a network interface, a local or wide
area network, and other wired or wireless communications
channels.
10127] In this document, the terms "computer program
medium" and "computer usable medium" are used to gen-
erally refer to transitory or non-transitory media. Such media
may be, e.g., memory 708, storage unit 720, media 714, and
channel 728. These and other various forms of computer
program media or computer usable media may be involved
in carrying one or more sequences of one or more instruc-
tions to a processing device for execution. Such instructions
embodied on the medium, are generally referred to as
"computer program code" or a "computer program product"
(which may be grouped in the form of computer programs
or other groupings). When executed, such instructions might
enable the computing component 700 to perform features or
functions of the present application as discussed herein.
10128] It should be understood that the various features,
aspects and functionality described in one or more of the
individual embodiments are not limited in their applicability

Nov. 18, 2021

to the particular embodiment with which they are described.
Instead, they can be applied, alone or in various combina-
tions, to one or more other embodiments, whether or not
such embodiments are described and whether or not such
features are presented as being a part of a described embodi-
ment. Thus, the breadth and scope of the present application
should not be limited by any of the above-described exem-
plary embodiments.
10129] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. As
examples of the foregoing, the term "including" should be
read as meaning "including, without limitation" or the like.
The term "example" is used to provide exemplary instances
of the item in discussion, not an exhaustive or limiting list
thereof. The terms "a" or "an" should be read as meaning "at
least one," "one or more" or the like; and adjectives such as
"conventional," "traditional," "normal," "standard,"
"known." Terms of similar meaning should not be construed
as limiting the item described to a given time period or to an
item available as of a given time. Instead, they should be
read to encompass conventional, traditional, normal, or
standard technologies that may be available or known now
or at any time in the future. Where this document refers to
technologies that would be apparent or known to one of
ordinary skill in the art, such technologies encompass those
apparent or known to the skilled artisan now or at any time
in the future.
10130] The presence of broadening words and phrases
such as "one or more," "at least," "but not limited to" or
other like phrases in some instances shall not be read to
mean that the narrower case is intended or required in
instances where such broadening phrases may be absent.
The use of the term "component" does not imply that the
aspects or functionality described or claimed as part of the
component are all confgured in a common package. Indeed,
any or all of the various aspects of a component, whether
control logic or other components, can be combined in a
single package or separately maintained and can further be
distributed in multiple groupings or packages or across
multiple locations.
10131] Additionally, the various embodiments set forth
herein are described in terms of exemplary block diagrams,
flow charts and other illustrations. As will become apparent
to one of ordinary skill in the art after reading this document,
the illustrated embodiments and their various alternatives
can be implemented without confnement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or confguration.

What is claimed is:
1. A method for determining velocity of an object asso-

ciated with a three-dimensional (3D) scene, the method
comprising:

receiving two sets of 3D point cloud data of the scene
from two consecutive point cloud sweeps;

aligning the two consecutive point cloud data sets into the
same coordinate frame;

encoding data of the point cloud data sets using a pillar
feature network to extract two-dimensional (2D)
bird's-eye-view embeddings for each of the point cloud
data sets in the form of pseudo images, wherein the 2D
bird' s-eye-view embeddings for a first of the two point
cloud data sets comprises pillar features for the first

US 202 1/0358296 Al
12

point cloud data set and the 2D bird' s-eye-view embed-
dings for a second of the two point cloud data sets
comprises pillar features for the second point cloud
data set; and

encoding the pillar features using a feature pyramid
network and performing a 2D optical flow estimation to
estimate the velocity of the object.

2. The method of claim 1, further comprising applying a
contextual network to use contextual information to refine
the velocity estimate.

3. The method of claim 2, wherein the context network is
a feedforward CNN based on dilated convolutions.

4. The method of claim 1, wherein receiving two sets of
3D point cloud data of the scene comprises receiving the first
point cloud data set by a first pillar feature network and
receiving a second point cloud data set by a second pillar
feature network, wherein the first point cloud data set
represents the scene at a time t-1 and the second point cloud
data set represents the scene at a time t subsequent to the
time t-1.

S. The method of claim 1, wherein encoding data of the
point cloud data sets comprises voxelizing the point cloud
data sets to render surfaces in the data sets onto a grid of
discretized volume elements in a 3D space to create a set of
pillars.

6. The method of claim 5, wherein the set of pillars
comprise a (D, P, N) shape tensor in which P is the number
of pillars and N denotes the number of points per pillar.

7. The method of claim 5, further comprising encoding
voxel information from the voxelizing to extract the features
of the point cloud data sets.

8. The method of claim 7, further comprising scattering
the encoded features back to their original pillar locations to
create the bird' s-eye-view.

9. The method of claim 1, wherein the 2D optical flow
estimation comprises warping the pseudo image of the first
point cloud data set to align the pseudo image of the first
point cloud data set with the pseudo image of the second
point cloud data set.

10. The method of claim 9, wherein the 2D optical flow
estimation further comprises computing a cost function of
the warped pseudo image of the first point cloud data set and
the pseudo image of the second point cloud data set, by
identifying displacement of a feature from the first image to
the second image.

11. The method of claim 10, wherein the 2D optical flow
estimation further comprises using the cost function to
estimate the flow of the object.

12. The method of claim 1, wherein performing a 2D
optical flow estimation to estimate the velocity of the object
comprises aggregating bird's eye view motion vectors to
compute a single mean velocity and co-variance for each
obstacle cluster.

13. The method of claim 12, wherein a sample is weighted
based on an occupancy probability of the cell to which the
sample belongs.

14. The method of claim 1, wherein estimated velocity of
the object is a 2-D flow vector for the object.

15. The method of claim 1, further comprising using
annotated track cuboids to auto-generate the 2D flow in
multiple scales.

Nov. 18, 2021

16. The method of claim 1, further comprising performing
flow estimation only on labeled dynamic objects and not
performing flow estimation on non-labeled obstacles or
background objects.

17. The method of claim 1, wherein the method is
performed using three or more sets of 3D point cloud data
of the scene, including aligning all of the point cloud data
sets into the same coordinate frame, encoding data of each
of the point cloud data sets using a pillar feature network to
extract two-dimensional (2D) bird's-eye-view embeddings
for each of the point cloud data sets comprising pillar
features for each point cloud data set, and encoding the pillar
features using a feature pyramid network and performing a
2D optical flow estimation to estimate the velocity of the
object.

18. The method of claim 1, wherein encoding the pillar
features using a feature pyramid network further includes
using 2D map information as an additional channel input to
the feature pyramid network.

19. The method of claim 1, further comprising filtering the
point cloud datasets using a ground height map, wherein the
filtering comprises comparing data point heights against
ground height and discarding a data point whose point
height is not greater than the ground height at the point's
location.

20. A system for determining velocity of an object asso-
ciated with a three-dimensional (3D) scene, the system
comprising:

a non-transitory memory configured to store instructions;

at least one processor configured to execute the instruc-
tions to perform the operations of:

receiving two sets of 3D point cloud data of the scene
from two consecutive point cloud sweeps;

aligning the two consecutive point cloud data sets into
the same coordinate frame;

encoding data of the point cloud data sets using a pillar
feature network to extract two-dimensional (2D)
bird' s-eye-view embeddings for each of the point
cloud data sets in the form of pseudo images,
wherein the 2D bird' s-eye-view embeddings for a
first of the two point cloud data sets comprises pillar
features for the first point cloud data set and the 2D
bird' s-eye-view embeddings for a second of the two
point cloud data sets comprises pillar features for the
second point cloud data set; and

encoding the pillar features using a feature pyramid
network and performing a 2D optical flow estimation
to estimate the velocity of the object.

21. A system for determining velocity of an object asso-
ciated with a three-dimensional (3D) scene, the system
comprising:

a pillar feature network to receive two sets of 3D point
cloud data of the scene from two consecutive point
cloud sweeps, and to encode data of the point cloud
data to extract two-dimensional (2D) bird's-eye-view
embeddings for each of the point cloud data sets in the
form of pseudo images, wherein the 2D bird's-eye-
view embeddings for a first of the two point cloud data
sets comprises pillar features for the first point cloud
data set and the 2D bird' s-eye-view embeddings for a
second of the two point cloud data sets comprises pillar
features for the second point cloud data set; and

US 202 1/0358296 Al
13

feature pyramid network to encode the pillar features
and performing a 2D optical flow estimation to estimate
the velocity of the object.

* * * * *

Nov. 18, 2021

	Bibliography
	Drawings
	Description
	Claims

