
III III 0 IIOI OlD 1101 OII DID IIII 0I I0I 101 0II 101 1010 II 0I II 
US 20210358296A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 202 1/0358296 Al 

LEE et al. (43) Pub. Date: Nov. 18, 2021 

(54) BIRD'S EYE VIEW BASED VELOCITY 
ESTIMATION 

(71) Applicant: TOYOTA RESEARCH INSTITUTE, 
INC., Los Altos, CA (US) 

(72) Inventors: Kuan-Hui LEE, San Jose, CA (US); 
Matthew T. Kliemann, Ann Arbor, MI 
(US); Adrien David Gaidon, Mountain 
View, CA (US) 

(21) Appl. No.: 16/876,699 

(22) Filed: May 18, 2020 

Publication Classification 

(51) Int. Cl. 
GO8G 1/01 (2006.01) 
G06T 7/246 (2006.01) 
B60W 60/00 (2006.01) 
G06K 9/62 (2006.01) 

20 
/ 

/ 
324 7 322 

332 

ici 
shared w - 

P tPllr 

(52) U.S. Cl. 
CPC ............GO8G 1/0116 (2013.01); GO6T 7/246 

(2017.01); G06T 2207/1 0028 (2013.01); B6OW 
60/002 72 (2020.02); GO6K 9/6259 (2013.01); 

B6OW 60/0011 (2020.02) 

(57) ABSTRACT 

Systems and methods determining velocity of an object 
associated with a three-dimensional (3D) scene may include: 
a LIDAR system generating two sets of 3D point cloud data 
of the scene from two consecutive point cloud sweeps; a 
pillar feature network encoding data of the point cloud data 
to extract two-dimensional (2D) bird' s-eye-view embed-
dings for each of the point cloud data sets in the form of 
pseudo images, wherein the 2D bird's-eye-view embeddings 
for a first of the two point cloud data sets comprises pillar 
features for the first point cloud data set and the 2D 
bird' s-eye-view embeddings for a second of the two point 
cloud data sets comprises pillar features for the second point 
cloud data set; and a feature pyramid network encoding the 
pillar features and performing a 2D optical flow estimation 
to estimate the velocity of the object. 
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BIRD'S EYE VIEW BASED VELOCITY 
ESTIMATION 

TECHNICAL FIELD 

10001] The present disclosure relates generally to velocity 
estimation, and in particular, some implementations may 
relate to converting point cloud information into a two 
dimensional form for velocity estimation. 

DESCRIPTION OF RELATED ART 

10002] Deploying autonomous vehicles (AVs) is a tech-
nologically complex challenge. Among other challenges, 
AVs need to accurately detect and track moving objects such 
as vehicles, pedestrians, and cyclists in realtime. In autono-
mous driving, accurately estimating the state of surrounding 
obstacles is critical for safe and robust path planning. 
However, this perception task is difficult, particularly for 
generic obstacles, due to appearance and occlusion changes. 
Perceptual errors can manifest as braking and swerving 
maneuvers that can be unsafe and uncomfortable. Many 
contemporary autonomous driving systems utilize a "detect 
then track" approach to perceive the state of objects in the 
environment. This approach has strongly benefited from 
recent advancements in 3-D object detection and state 
estimation. However, this approach often suffers errors as it 
relies on geometric consistency of the object detection 
results over time. These errors can include: False negatives, 
or failing to produce detection where an obstacle exists; 
false positives, or hallucinating an obstacle where none 
exists; a limited predefined ontology of detectable object 
classes resulting in certain types of obstacles, such as 
guardrails or road debris, not being directly recognized 
(while another module may handle detection of these 
obstacles, it often lacks the priors needed to represent these 
obstacle consistently for tracking purposes); observing a 
dynamic scene from a moving platform requiring the system 
to cope with changing viewpoints and occlusions, which 
may result in temporally inconsistent detections of the same 
object leading to false motion estimates (e.g., perceptual 
aliasing of a long guardrail can often create hallucinated 
motion); and obstacle kinematic models used in object 
tracking can further compound the problem, causing failed 
or incorrect associations, particularly when the state initial-
ization is poor. 
10003] To estimate motion in the surrounding world, con-
ventional solutions have estimated scene flow directly from 
LIDAR sweeps. Some techniques formulate the rigid scene 
flow estimation by an energy minimization along with 
SHOT feature descriptors. Others use a learning based flow 
estimation by training encoding network to extract features 
from point cloud grids. 
10004] Some solutions rely on the depth image represen-
tation for flow estimation, using a LIDAR-generated depth 
image representation with a convolutional neural network 
(CNN) to estimate the motion of the surrounding vehicles. 
Others introduce a 3-D scene flow approach built on the top 
of FlowNet to compute point cloud images for dense 3-D 
flow prediction. 
10005] Unstructured data representation has also been 
applied to scene flow estimation. Some have proposed an 
end-to-end deep network to fuse features from unstructured 
point clouds from two consecutive LIDAR sweeps. Others 
have proposed a parametric continuous convolution layer for 

Nov. 18, 2021 

non-grid structured data, and demonstrated the applications 
in point cloud segmentation and LIDAR motion estimation. 
Still others propose using FlowNet3D, which builds on 
PointNet++, leveraging a flow embedding layer to fuse two 
consecutive LIDAR sweeps. Extensions of this use addi-
tional geometric loss functions beyond L2 distance (Point to 
Plane and Cosine Distance) and develop a new evaluation by 
looking at the 3D reconstruction quality of dynamic models. 
It has also been proposed to use PointFlowNet to jointly 
train the tasks of 3-D scene flow, rigid motion prediction and 
3D object detection from unstructured LIDAR data. 
10006] Recent solutions have used a self-supervised 
mechanism leveraging geometric loss constraints for 3-D 
scene flow estimation. Others propose an adaptation of the 
PWCNet architecture for 3-D scene flow estimation trained 
in a self-supervised way. 
10007] Occupancy grid maps (OGMs) are widely used to 
represent scene obstacle occupancy for robotics applica-
tions. In some solutions a deep tracking framework incor-
porates a simple recurrent neural network (RNN) to learn 
0GM-to -0GM mappings. A 2-D BeV flow estimator can be 
formulated as a similarity learning problem by transferring 
3D 0GM into 2-D grids of embedding. A separate classifier 
removes background cells and the remaining foreground 
cells are matched between frames using an expectation 
maximization algorithm. The RNN technique can be 
extended by using a spatial transformer module and dilated 
gated recurrent units instead of a simple RNN to account for 
observations from a moving platform. These employ a 
self-supervised training scheme to use the un-occluded 
portions of future frames as training examples. A learned 
approach to determine a motion mask on an 0GM using 
hand crafted input features such as mean intensity and height 
range of points falling within each cell, rather than raw point 
clouds, can also be used. 
10008] Estimation of the per cell motion state within an
occupancy grid is a recent advancement. These are typically 
referred to as dynamic occupancy grid maps (DOGMa). 
Online versions typically model this state using particle 
filtering. One implementation of DOGMa uses a particle 
filtering scheme. Various methods have also been proposed 
to cluster and extract obstacle level representations from a 
DOGMa for multiple object tracking. Various deep learning 
works build on the DOGMa representation for various tasks. 
One augments the DOGMa with a recurrent network trained 
by self-supervised labeling to predict future states. Another 
builds upon the Dynamic Occupancy Grid to do semantic 
segmentation of the DOGMa internal per cell state as static 
or dynamic. 

BRIEF SUMMARY OF THE DISCLOSURE 

10009] Embodiments may be implemented to provide an
end-to-end deep learning framework for LIDAR-based flow 
estimation using a bird's eye view (BeV). Embodiments 
may use consecutive point cloud pairs as input data sets and 
produce a 2-D BeV "flow" grid describing the dynamic state 
of each cell. Experimental results show that the proposed 
system not only estimates 2-D BeV flow accurately but also 
improves tracking performance of both dynamic and static 
objects. 
10010] In some embodiments, a method for determining 
velocity of an object associated with a three-dimensional 
(3D) scene may include: receiving two sets of 3D point 
cloud data of the scene from two consecutive point cloud 
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sweeps; aligning the two consecutive point cloud data sets 
into the same coordinate frame; encoding data of the point 
cloud data sets using a pillar feature network to extract 
two-dimensional (2D) bird's-eye-view embeddings for each 
of the point cloud data sets in the form of pseudo images, 
wherein the 2D bird's-eye-view embeddings for a first of the 
two point cloud data sets may include pillar features for the 
first point cloud data set and the 2D bird' s-eye-view embed-
dings for a second of the two point cloud data sets may 
include pillar features for the second point cloud data set; 
and encoding the pillar features using a feature pyramid 
network and performing a 2D optical flow estimation to 
estimate the velocity of the object. 

10011] In other embodiments, a system for determining 
velocity of an object associated with a three-dimensional 
(3D) scene, the system may include: a non-transitory 
memory configured to store instructions; at least one pro-
cessor configured to execute the instructions to perform the 
operations of: receiving two sets of 3D point cloud data of 
the scene from two consecutive point cloud sweeps; aligning 
the two consecutive point cloud data sets into the same 
coordinate frame; encoding data of the point cloud data sets 
using a pillar feature network to extract two-dimensional 
(2D) bird's-eye-view embeddings for each of the point cloud 
data sets in the form of pseudo images, wherein the 2D 
bird's-eye-view embeddings for a first of the two point cloud 
data sets may include pillar features for the first point cloud 
data set and the 2D bird's-eye-view embeddings for a 
second of the two point cloud data sets may include pillar 
features for the second point cloud data set; and encoding the 
pillar features using a feature pyramid network and perform-
ing a 2D optical flow estimation to estimate the velocity of 
the object. 

10012] In further embodiments, a system for determining 
velocity of an object associated with a three-dimensional 
(3D) scene, the system may include: a pillar feature network 
to receive two sets of 3D point cloud data of the scene from 
two consecutive point cloud sweeps, and to encode data of 
the point cloud data to extract two-dimensional (2D) bird's-
eye-view embeddings for each of the point cloud data sets in 
the form of pseudo images, wherein the 2D bird's-eye-view 
embeddings for a first of the two point cloud data sets may 
include pillar features for the first point cloud data set and 
the 2D bird' s-eye-view embeddings for a second of the two 
point cloud data sets may include pillar features for the 
second point cloud data set; and a feature pyramid network 
to encode the pillar features and performing a 2D optical 
flow estimation to estimate the velocity of the object. 

10013] The systems and methods may further include 
applying a contextual network to use contextual information 
to refine the velocity estimate. The context network may be 
a feedforward CNN based on dilated convolutions. 

10014] Receiving two sets of 3D point cloud data of the 
scene may include receiving the first point cloud data set by 
a first pillar feature network and receiving a second point 
cloud data set by a second pillar feature network, wherein 
the first point cloud data set represents the scene at a time t— 1 
and the second point cloud data set represents the scene at 
a time t subsequent to the time t-1. 

10015] Encoding data of the point cloud data sets may 
include voxelizing the point cloud data sets to render sur-
faces in the data sets onto a grid of discretized volume 
elements in a 3D space to create a set of pillars. 
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10016] The set of pillars may include a (D, P, N) shape 
tensor in which P is the number of pillars and N denotes the 
number of points per pillar. 

10017] The systems and methods may further include 
encoding voxel information from the voxelizing to extract 
the features of the point cloud data sets. The systems and 
methods may further include scattering the encoded features 
back to their original pillar locations to create the bird's-
eye-view. 

10018] The 2D optical flow estimation may include warp-
ing the pseudo image of the first point cloud data set to align 
the pseudo image of the first point cloud data set with the 
pseudo image of the second point cloud data set. The 2D 
optical flow estimation further may include computing a cost 
function of the warped pseudo image of the first point cloud 
data set and the pseudo image of the second point cloud data 
set, by identifying displacement of a feature from the first 
image to the second image. The 2D optical flow estimation 
further may include using the cost function to estimate the 
flow of the object. 

10019] Performing a 2D optical flow estimation to esti-
mate the velocity of the object may include aggregating 
bird's eye view motion vectors to compute a single mean 
velocity and co-variance for each obstacle cluster. A sample 
may be weighted based on an occupancy probability of the 
cell to which the sample belongs. 

10020] The estimated velocity of the object may be a 2-D 
flow vector for the object. 

10021] The systems and methods may further include 
using annotated track cuboids to auto-generate the 2D flow 
in multiple scales. The systems and methods may further 
include performing flow estimation only on labeled dynamic 
objects and not performing flow estimation on non-labeled 
obstacles or background objects. 

10022] The systems and methods may be performed using 
three or more sets of 3D point cloud data of the scene, 
including aligning all of the point cloud data sets into the 
same coordinate frame, encoding data of each of the point 
cloud data sets using a pillar feature network to extract 
two-dimensional (2D) bird's-eye-view embeddings for each 
of the point cloud data sets comprising pillar features for 
each point cloud data set, and encoding the pillar features 
using a feature pyramid network and performing a 2D 
optical flow estimation to estimate the velocity of the object. 

10023] Encoding the pillar features using a feature pyra-
mid network further includes using 2D map information as 
an additional channel input to the feature pyramid network. 

10024] The systems and methods may further include 
filtering the point cloud datasets using a ground height map, 
wherein the filtering may include comparing data point 
heights against ground height and discarding a data point 
whose point height is not greater than the ground height at 
the point's location. 

10025] Other features and aspects of the disclosed tech-
nology will become apparent from the following detailed 
description, taken in conjunction with the accompanying 
drawings, which illustrate, by way of example, the features 
in accordance with embodiments of the disclosed technol-
ogy. The summary is not intended to limit the scope of any 
inventions described herein, which are defined solely by the 
claims attached hereto. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

10026] The present disclosure, in accordance with one or 
more various embodiments, is described in detail with 
reference to the following figures. The figures are provided 
for purposes of illustration only and merely depict typical or 
example embodiments. 
10027] FIG. 1 illustrates an example autonomous or semi-
autonomous vehicle with which embodiments of the dis-
closed technology may be implemented. 
10028] FIG. 2 illustrates an example system for BeV flow 
estimation in accordance with various embodiments of the 
systems and methods disclosed herein. 
10029] FIG. 3 illustrates an example architecture for BeV 
flow estimation in accordance with various embodiments of 
the systems and methods disclosed herein. 
10030] FIG. 4 illustrates an example process for BeV flow 
estimation in accordance with various embodiments of the 
systems and methods disclosed herein. 
10031] FIG. S is a diagram illustrating an example of 
velocity estimation via self-supervised learning in accor-
dance with various embodiments. 
10032] FIG. 6 illustrates an example process for velocity 
estimation via self-supervised learning in accordance with 
various embodiments. 
10033] FIG. 7 is an example computing component that 
may be used to implement various features of embodiments 
described in the present disclosure. 
10034] The figures are not exhaustive and do not limit the 
present disclosure to the precise form disclosed. 

DETAILED DESCRIPTION 

10035] Embodiments of the systems and methods dis-
closed herein can provide a LIDAR-based scene motion 
estimator decoupled from object detection. Embodiments 
may be implemented to use two or more consecutive full 
LIDAR point cloud sweeps as inputs, and encode each 
LIDAR sweep into a 2-D BeV representation of feature 
vectors using a pillar feature extractor. Then, the two or 
more BeV feature grids are inputted to an optical flow 
network. The final output is a 2-D flow vector for each cell. 
Because of the computational efficiencies, embodiments 
may be feasible for deployment to a robotic system, as 
opposed to prior methods. 
10036] Embodiments implement a 2-D BeV representation 
over a 3-D or projective representation (depth image) for 
multiple reasons. Primarily, for autonomous driving, motion 
occurring in the x-y plane is important, particularly for 
motion planning. Second, the Euclidean representation 
allows developers to design the network architecture to 
account for expected relative scene motion. Additionally, a 
2-D representation provides computational efficiency com-
pared to 3-D approaches and allows the system to share the 
encoded feature representation with an object detection 
network. 
10037] Embodiments may use a systematic end-to-end 
method to effectively estimate the 2-D motion for an entire 
scene in LIDAR BeV imagery, without prior removal of 
ground returns. The system may leverage contextual knowl-
edge of the scene but still generalize it to properly estimate 
the motion of unseen object types. 
10038] The BeV motion results can be integrated into, and 
used to improve, object tracking performance, not only in a 
public dataset, but also in a real-world autonomous driving 
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platform. Embodiments may also be implemented to esti-
mate ego vehicle motion (motion of the host/subject 
vehicle), such as between frames, and may leverage super-
vision of the inertial navigation sensor. 
10039] Embodiments disclosed herein estimate velocity in 
2-D BeV grids by combining a Pillar Feature Network 
(PFN) with an optical flow network. In some embodiments, 
two consecutive point cloud sweeps are aligned into the 
same coordinate frame; in other words, the coordinate of 
LIDAR sweep at t— 1 will be transferred to the coordinate of 
LIDAR sweep at t using the odometry information of the 
robot. Next, two point clouds are encoded by the PFN to 
build two BeV pseudo-images where each cell has a learned 
embedding based on points that had fallen inside of it. Then 
the two pseudo images are fed to a feature pyramid network 
and an optical flow network for dense flow estimation. 
Embodiments may also provide 2-D map information (e.g., 
BeV on- or off-road image) as an additional channel input to 
the feature pyramid network. Sensor fusion can enhance 
performance by using inputs from other data sources. For 
example, embodiments may further leverage radar data as an
additional input channel to the feature pyramid network, 
which may include range, range-rate (velocity) and occu-
pancy information from the radar return signal. 
10040] The systems and methods disclosed herein may be 
implemented for use in scene flow estimation for robotics, 
autonomous vehicles and other automated technologies. In 
the case of autonomous vehicles, embodiments may be 
implemented for any of a number of different autonomous or 
semi-autonomous vehicles and vehicle types to perform flow 
estimation for surrounding objects or for the host (ego) 
vehicle itself For example, the systems and methods dis-
closed herein may be used with cars, trucks, buses, con-
struction vehicles and other on- and off-road vehicles. These 
can include vehicles for transportation of people/personnel, 
materials or other items. In addition, the technology dis-
closed herein may also extend to other vehicle types as well. 
An example Autonomous Vehicle (AV) in which embodi-
ments of the disclosed technology may be implemented is 
illustrated in FIG. 1. 
10041] FIG. 1 illustrates an example autonomous or semi-
autonomous vehicle with which embodiments of the dis-
closed technology may be implemented. In this example, 
vehicle 100 includes a computing system 110, sensors 120, 
AV control systems, 130 and vehicle systems 140. Vehicle 
100 may include a greater or fewer quantity of systems and 
subsystems and each could include multiple elements. 
Accordingly, one or more of the functions of the technology 
disclosed herein may be divided into additional functional or 
physical components, or combined into fewer functional or 
physical components. Additionally, although the systems 
and subsystems illustrated in FIG. 1 are shown as being 
partitioned in a particular way, the functions of vehicle 100 
can be partitioned in other ways. For example, various 
vehicle systems and subsystems can be combined in differ-
ent ways to share functionality. 
10042] Sensors 120 may include a plurality of different 
sensors to gather data regarding vehicle 100, its operator, its 
operation and its surrounding environment. In this example, 
sensors 120 include LIDAR 111, radar 112, or other like the 
distance measurement sensors, image sensors 113, throttle 
and brake sensors 114, 3D accelerometers 115, steering 
sensors 116, and a GPS or other vehicle positioning system 
117. One or more of the sensors 120 may gather data and 
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send that data to the vehicle ECU or other processing unit. 
Sensors 120 (and other vehicle components) may be dupli-
cated for redundancy. 
10043] Distance measuring sensors such as LIDAR 111, 
radar 112, JR sensors and other like sensors can be used to 
gather data to measure distances and closing rates to various 
external objects such as other vehicles, traffic signs, pedes-
trians, light poles and other objects. Jmage sensors 113 can 
include one or more cameras or other image sensors to 
capture images of the environment around the vehicle as 
well as internal to the vehicle. Jnformation from image 
sensors 113 can be used to determine information about the 
environment surrounding the vehicle 100 including, for 
example, information regarding other objects surrounding 
vehicle 100. For example, image sensors 113 may be able to 
recognize landmarks or other features (including, e.g., street 
signs, traffic lights, etc.), slope of the road, lines on the road, 
curbs, objects to be avoided (e.g., other vehicles, pedestri-
ans, bicyclists, etc.) and other landmarks or features. Jnfor-
mation from image sensors 113 can be used in conjunction 
with other information such as map data or information from 
positioning system 117 to determine, refined or verify 
vehicle location. 
10044] Throttle and brake sensors 114 can be used to 
gather data regarding throttle and brake application by a 
human or autonomous operator. Accelerometers 115 may 
include a 3D accelerometer to measure roll, pitch and yaw 
of the vehicle. Accelerometers 115 may include any com-
bination of accelerometers and gyroscopes for the vehicle or 
any of a number of systems or subsystems within the vehicle 
to sense position and orientation changes based on inertia. 
10045] Steering sensors 116 (e.g., such as a steering angle 
sensor) can be included to gather data regarding steering 
input for the vehicle by a human or autonomous operator. A 
steering sensor may include a position encoder monitor the 
angle of the steering input in degrees. Analog sensors may 
collect voltage differences that can be used to determine 
information about the angle and turn direction, while digital 
sensors may use an LED or other light source to detect the 
angle of the steering input. A steering sensor may also 
provide information on how rapidly the steering wheel is 
being turned. A steering wheel being turned quickly is 
generally normal during low-vehicle-speed operation and 
generally unusual at highway speeds. Jf the driver is turning 
the wheel at a fast rate while driving at highway speeds the 
vehicle computing system may interpret that as an indication 
that the vehicle is out of control. Steering sensors 116 may 
also include a steering torque sensor to detect an amount of 
force the driver is applying to the steering wheel. 
10046] Vehicle positioning system 117 (e.g., GPS or other 
positioning system) can be used to gather position informa-
tion about a current location of the vehicle as well as other 
positioning or navigation information. 
10047] Although not illustrated, other sensors 120 may be 
provided as well. Various sensors 120 may be used to 
provide input to computing system 110 and other systems of 
vehicle 100 so that the systems have information useful to 
operate in an autonomous, semi-autonomous or manual 
mode. 
10048] AV control systems 130 may include a plurality of 
different systems/subsystems to control operation of vehicle 
100. Jn this example, AV control systems 130 include 
steering unit 136, throttle and brake control unit 135, sensor 
fusion module 131, computer vision module 134, pathing 
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module 138, and obstacle avoidance module 139. Sensor 
fusion module 131 can be included to evaluate data from a 
plurality of sensors, including sensors 120. Sensor fusion 
module 131 may use computing system 110 or its own 
computing system to execute algorithms to assess inputs 
from the various sensors. 
10049] Throttle and brake control unit 135 can be used to 
control actuation of throttle and braking mechanisms of the 
vehicle to accelerate, slow down, stop or otherwise adjust 
the speed of the vehicle. For example, the throttle unit can 
control the operating speed of the engine or motor used to 
provide motive power for the vehicle. Likewise, the brake 
unit can be used to actuate brakes (e.g, disk, drum, etc.) or 
engage regenerative braking (e.g., such as in a hybrid or 
electric vehicle) to slow or stop the vehicle. 
10050] Steering unit 136 may include any of a number of 
different mechanisms to control or alter the heading of the 
vehicle. For example, steering unit 136 may include the 
appropriate control mechanisms to adjust the orientation of 
the front or rear wheels of the vehicle to accomplish changes 
in direction of the vehicle during operation. Electronic, 
hydraulic, mechanical or other steering mechanisms may be 
controlled by steering unit 136. 
10051] Computer vision module 134 may be included to 
process image data (e.g., image data captured from image 
sensors 113, or other image data) to evaluate the environ-
ment within or surrounding the vehicle. For example, algo-
rithms operating as part of computer vision module 134 can 
evaluate still or moving images to determine features and 
landmarks (e.g., road signs, traffic lights, lane markings and 
other road boundaries, etc.), obstacles (e.g., pedestrians, 
bicyclists, other vehicles, other obstructions in the path of 
the subject vehicle) and other objects. The system can 
include video tracking and other algorithms to recognize 
objects such as the foregoing, estimate their speed, map the 
surroundings, and so on. 
10052] Pathing module 138 may be included to compute a 
desired path for vehicle 100 based on input from various 
other sensors and systems. For example, pathing module 138 
can use information from positioning system 117, sensor 
fusion module 131, computer vision module 134, obstacle 
avoidance module 139 (described below) and other systems 
to determine a safe path to navigate the vehicle along a 
segment of a desired route. Pathing module 138 may also be 
configured to dynamically update the vehicle path as real-
time information is received from sensors 120 and other 
control systems 130. 
10053] Obstacle avoidance module 139 can be included to 
determine control inputs necessary to avoid obstacles 
detected by sensors 120 orAV control systems 130. Obstacle 
avoidance module 139 can work in conjunction with pathing 
module 138 to determine an appropriate path to avoid a 
detected obstacle. 
10054] Vehicle systems 140 may include a plurality of 
different systems/subsystems to control operation of vehicle 
100. Jn this example, AV control systems 130 include 
steering system 121, throttle system 122, brakes 123, trans-
mission went 24, electronic control unit (ECU) 125 and 
propulsion system 126. These vehicle systems 140 may be 
controlled by AV control systems 130 in autonomous, semi-
autonomous or manual mode. For example, in autonomous 
or semi-autonomous mode, AV control systems 130, alone or 
in conjunction with other systems, can control vehicle 
systems 140 to operate the vehicle in a fully or semi-
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autonomous fashion. This may also include an assist mode 
in which the vehicle takes over partial control or activates 
ADAS controls to assist the driver with vehicle operation. 
10055] Computing system 110 in the illustrated example 
includes a processor 106, and memory 103. Some or all of 
the functions of vehicle 100 may be controlled by computing 
system 110. Processor 106 can include one or more GPUs, 
CPUs, microprocessors or any other suitable processing 
system. Processor 106 may include one or more single core 
or multicore processors. Processor 106 executes instructions 
108 stored in a non-transitory computer readable medium, 
such as memory 103. 
10056] Memory 103 may contain instructions (e.g., pro-
gram logic) executable by processor 106 to execute various 
functions of vehicle 100, including those of vehicle systems 
and subsystems. Memory 103 may contain additional 
instructions as well, including instructions to transmit data 
to, receive data from, interact with, and/or control one or 
more of the sensors 120, AV control systems, 130 and 
vehicle systems 140. In addition to the instructions, memory 
103 may store data and other information used by the vehicle 
and its systems and subsystems for operation, including 
operation of vehicle 100 in the autonomous, semi-autono-
mous or manual modes. 
10057] Although one computing system 110 is illustrated 
in FIG. 1, in various embodiments multiple computing 
systems 110 can be included. Additionally, one or more 
systems and subsystems of vehicle 100 can include its own 
dedicated or shared computing system 110, or a variant 
thereof Accordingly, although computing system 110 is 
illustrated as a discrete computing system, this is for ease of 
illustration only, and computing system 110 can be distrib-
uted among various vehicle systems or components. 
10058] Vehicle 100 may also include a wireless commu-
nication system (not illustrated) to communicate with other 
vehicles, infrastructure elements, cloud components and 
other external entities using any of a number of communi-
cation protocols including, for example, V2V V21 and V2X 
protocols. Such a wireless communication system may 
allow vehicle 100 to receive information from other objects 
including, for example, map data, data regarding infrastruc-
ture elements, data regarding operation and intention of 
surrounding vehicles, and so on. A wireless communication 
system may also allow vehicle 100 to transmit information 
to other objects. In some applications, computing functions 
for various embodiments disclosed herein may be performed 
entirely on computing system 110, distributed among two or 
more computing systems 110 of vehicle 100, performed on 
a cloud-based platform, performed on an edge-based plat-
form, or performed on a combination of the foregoing. 
10059] The example of FIG. 1 is provided for illustration 
purposes only as one example of vehicle systems with which 
embodiments of the disclosed technology may be imple-
mented. One of ordinary skill in the art reading this descrip-
tion will understand how the disclosed embodiments can be 
implemented with this and other vehicle platforms. 
10060] Embodiments for deep learning for image percep-
tion utilize synthetic data, such as data generated program-
matically. Synthetic data may include computer-generated 
data created to mimic real data. Embodiments may be 
implemented to disentangle the components of the data set, 
and perform multiple iterations. 
10061] FIG. 2 illustrates an example system for BeV flow 
estimation in accordance with various embodiments of the 

Nov. 18, 2021 

systems and methods disclosed herein. Referring now to 
FIG. 2, the example system includes a LIDAR system 230, 
a point cloud generator 240 (which may be part of LIDAR 
system 230, a flow estimation module 250, vehicle control 
modules 260, and vehicle systems 268. LIDAR system 230 
includes light emitters and detectors to collect information 
surrounding the vehicle (or other robotics or automated 
system). In operation, LIDAR system 230 generates light 
beams, such as laser light beams, that are emitted in an arc 
up to 3600 surrounding the vehicle. The transmitted light is 
reflected by objects in the environment of the vehicle and the 
reflections are returned to photodetectors of LIDAR system 
230 where they are captured. The reflections are converted 
into electrical signals by any array of photodetectors, which 
can be implemented as photodiodes, avalanche photodiodes 
or other photodetectors systems. Timing information can be 
used to measure the time-of-flight of the optical signal from 
its source at LIDAR system 232 the object off of which it 
bounces and back to the photodetector where its reflection is 
received. This time-of-flight can be used to measure the 
distance from the vehicle (from LIDAR system 230) to the 
object. A 3D LIDAR system, therefore, can capture two-
dimensional data using photodetectors arranged in rows and 
columns and the third dimension, distance, determined 
based on the time-of-flight. LIDAR system 230 can be 
implemented using any of a number of different LIDAR 
technologies including electromechanical LIDAR and solid-
state LIDAR. LIDAR system 230 can be implemented and 
configured to provide the system with 360° of visibility 
about the subject vehicle. LIDAR system 230 can be imple-
mented with a relatively high degree of accuracy (e.g., on 
the order of +1-2 cms). 

10062] Data from LIDAR system 230 can be used to 
generate three-dimensional maps and point clouds that can 
be used by the autonomous vehicle or other robotic or 
automated system to navigate it surrounding environment. 
The LIDAR system can provide information to determine 
the bounds of the lane, the presence and location of sur-
rounding vehicles, pedestrians and other objects, the pres-
ence location of traffic signals, and so on. In addition to 
detecting the presence and location of objects, information 
from LIDAR system 230 can also be used to track obstacles 
and other objects like vehicles, pedestrians, and so on. 

10063] Data from LIDAR system 230 can be supplied to 
point cloud generator 240, but in some embodiments, point 
cloud generator 240 can be implemented as part of LIDAR 
system 230. Point cloud generator 240 can include a pro-
cessing system or other circuit implemented to generate 
point clouds from the data collected sensors. Point clouds 
can comprise a set of 3D points corresponding to part of a 
scene or a whole scene and can be compensated by the 
vehicle motion during the accumulation period of the frame. 
Each frame can be instantaneously captured (such as, e.g., 
using flash lidar or a global shutter camera) or accumulated 
over a full rotation of a sensor. This data can include image 
sensor data from an array of image sensors at LIDAR system 
230 as well as range data. Point cloud generator 240 can be 
implemented to collate the information collected from the 
image sensors to generate the three-dimensional point cloud 
map. For example, point cloud generator few hundred and 
40 can be configured to stitch together image information 
collected from the rows and columns of image sensors of 
LIDAR system 230 along with the range information for 
each pixel. Deep learning algorithms can be trained and used 
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to label point cloud data collected by LIDAR system 230. 
The point cloud can be stored in any of a number of different 
point cloud file formats such as those used for 3D modeling. 
10064] In operation, two or more point clouds (e.g., two, 
three, four or more point clouds) are provided to flow 
estimation module 250. In this example, flow estimation 
module 250 includes a processor 254 and memory 258. 
Processor 254 can include one or more GPUs, CPUs, 
microprocessors or any other suitable processing system. 
Processor 254 may include one or more single core or 
multicore processors. Processor 254 executes instructions 
256 stored in a non-transitory computer readable medium, 
such as memory 258. 
10065] Memory 258 may contain data as well as instruc-
tions (e.g., program logic) executable by processor 254 to 
perform flow estimation. These instructions may also 
include instructions 256 to execute various functions of 
vehicle 100, including those of vehicle systems and subsys-
tems. Memory 258 may contain additional instructions 256 
as well, including instructions to transmit data to, receive 
data from, interact with, and/or control one or more of the 
sensors 120, AV control systems, 130 and vehicle systems 
140. In addition to the instructions, memory 258 may store 
data and other information used by the vehicle and its 
systems and subsystems for operation, including operation 
of vehicle 100 in the autonomous, semi-autonomous or 
manual modes. 
10066] Although one flow estimation module 250 is illus-
trated in FIG. 2, in various embodiments flow estimation 
modules 250 can be included. In some embodiments, some 
or all of the functions of flow estimation module 250 may be 
implemented using a vehicle processing unit including, for 
example, an ECU or computing system 110. 
10067] Instructions 256 in memory 258 can be included to 
cause processor 254 to estimate flow using the point cloud 
data. Particularly, in one embodiment, the two point clouds 
are encoded by a pillar feature network to generate two-
dimensional bird's-eye-view pseudo-images in which each 
cell includes a learned embedding based on points falling 
within that cell. Instructions 256 in memory 258 can be 
further configured to process the BeV pseudo-images using 
an optical flow network for flow estimation. 
10068] The output of flow estimation module 250 can 
include flow estimates for one or more objects surrounding 
the vehicle. These flow estimates can include, for example, 
velocity and trajectory information for other vehicles, pedes-
trians, and other objects around which the subject vehicle 
intends to navigate. This flow estimation information can be 
provided to one or more of a number of vehicle control 
modules 260 for vehicle control. 
10069] The flow estimates generated by flow estimation 
module 250 may be used by any of a number of vehicle 
systems such as for autonomous driving, obstacle avoidance, 
assisted driving, driver warnings or other alerts, and so on. 
The flow estimates in this example are provided to various 
vehicle control modules 260 that can control the vehicle 
fully or partially in the can provide appropriate warnings and 
alerts to the driver. For example, in terms of the example 
vehicle described with reference to FIG. 1, this information 
can be provided to computing system 110 for routing, 
obstacle avoidance, assisted driving, and other functions. 
10070] In the illustrated example, include autonomous 
vehicle (AV) control module 266, advanced driver assis-
tance systems (ADAS) module 264 and driver alert module 
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262. In other embodiments, other vehicle control modules 
260 may be included. Autonomous vehicle control module 
266 can use the estimated flow information to operate the 
vehicle to avoid detected objects based on their estimated 
flow (e.g., given their estimated velocity and trajectory). 
This can include operating vehicle systems 268 such as 
throttle, steering and braking systems. ADAS module 264 
can use the information for ADAS assistance systems avail-
able on a given vehicle to execute ADAS maneuvers 
depending on the flow control information. For example, 
ADAS module 264 can provide instructions to a vehicle 
braking system of vehicle systems 268 to initiate emergency 
braking to avoid a collision with an object. As another 
example, ADAS module 264 can provide instructions to a 
steering system to execute object avoidance maneuvers. 
10071] Flow estimation module 250 may also activate 
driver alert module 262 to provide one or more alerts to the 
driver of the subject vehicle. These alerts may include, for 
example, audible, visual or tactile alerts to provide alerts, 
data or other information to the driver in response to the 
estimated flow information. This information might include, 
for example, an alert to the driver of a wrong way vehicle, 
a vehicle on a collision course with the subject vehicle or 
other condition of which the driver of the subject vehicle 
should be aware. 
10072] FIG. 3 illustrates an example architecture for BeV 
flow estimation in accordance with various embodiments of 
the systems and methods disclosed herein. FIG. 4 illustrates 
an example process for BeV flow estimation in accordance 
with various embodiments of the systems and methods 
disclosed herein. Referring now to FIGS. 3 and 4, an
example process and architecture are now described. This 
example includes a pillar feature network 320, feature 
pyramid 340 and an optical flow network 350. In this 
example, the system includes two pillar feature networks 
320 and two feature pyramids 340. In other implementa-
tions, a greater quantity of pillar feature networks 320 and 
feature pyramids 340 may be included to process a greater 
number of point clouds. 
10073] At operation 422, pillar feature network 320 
receives a point cloud from the vehicle LIDAR unit and 
operates on the data to extract a two-dimensional Birds-eye 
View pseudo-image from the point cloud. In this example, a 
first point cloud 314 is received by one pillar feature network 
320 and a second point cloud 312 is received by the other 
pillar feature network 320. The second point cloud 312 
represents the scene surrounding the vehicle at a time 
subsequent to the time t-1 of the scene represented by the 
first point cloud 314. In some embodiments, more than two 
point clouds can be used. Pillar feature network 320 in this 
example includes a voxelizer 322, a 3D classification and 
segmentation network 324 and a scatterplot generator 326. 
10074] In some embodiments, the point clouds can be 
filtered against a 2-D ground height map to reduce the data 
set. For example, a filtering algorithm can check to deter-
mine whether a point's z value (height) is greater than the 
ground height at that point's location, or greater than the 
ground height plus a predetermined margin. If the point's 
height is not greater than the ground height (or height plus 
margin), the point can be discarded. 
10075] At operation 424, voxelizer 322 may be imple-
mented to receive 3D surfaces detected by the LIDAR 
system and render them onto a grid of discretized volume 
elements in a 3D space. Avoxel comprises a volume element 



US 202 1/0358296 Al 
7 

(e.g., a cube) representing a value of a 3D surface or solid 
geometric element at a point in the 3D space. In one 
embodiment, in operation, a processing engine receives a 
surface from the LIDAR system for voxelization. This can 
be implemented, for example, using processor 254. In 
another embodiment, the processing engine may be a dedi-
cated hardware engine such as a specialized hardware unit in 
a GPU or an application specific integrated circuit (ASIC) 
configured to implement the voxelization algorithm. The 
processing engine maps the surface onto a plurality of 
voxels, which may be implemented as a grid (e.g., regularly 
spaced) of volumetric elements, such as cubic volumes 
arranged in a 3D array oriented along x, y, and z axes. The 
processing engine may then generate a value for each voxel 
in the plurality of voxels that intersects with the surface. In 
some embodiments, the value may be a scalar value, which 
may represent a value such as opacity (or transparency) for 
the voxel, or a vector value, which may represent, for 
example, a color for the voxel. 
10076] In some embodiments, voxelizer 322 discretizes 
the point clouds into an evenly spaced grid in a plane (e.g., 
in the x-y plane) creating a set of pillars. The point cloud 
features may be structured as a (D, P, N) shape tensor in 
which P is the number of pillars, N denotes the number of 
points per pillar. In the first dimension D=9 dimensional, the 
first four values denote coordinates x, y, z and reflectance r. 
The next five values denote the distances to the arithmetic 
mean x, y, z of all points in a pillar and the offset xp, y 
from the pillar center. Otherwise, the pillars with too few 
points may be treated as empty pillars or omitted from 
processing, for reasons of computational efficiency. 
10077] At operation 426, 3D classification and segmenta-
tion network 324 encodes the voxel information. In some 
embodiments, 3D classification and segmentation network 
324 may include a deep learning neural network that oper-
ates on the voxelized features to encode the voxel informa-
tion and extract the features of the point cloud data sets. In 
some embodiments a feature is processed by a simplified 
version of PointNet to encode to shape (C, P, N) and further 
encoded to (C, P) by a max operation over the channels. One 
example of a pillar feature extractor that may be used is 
described by A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. 
Yang, and 0. Beijbom, in "Pointpillars: Fast encoders for 
object detection from point clouds," in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 12 697-12 705. 
10078] In some embodiments, additional inputs to the 
voxelizer and classification and segmentation network may 
include sampled colors, semantic class and feature vectors of 
the point projected onto an overlapping camera frame. This 
may again provide a measure of sensor fusion using inputs 
from various sensors. 
10079] At operation 428, scatterplot generator 326 may be 
implemented to operate on the encoded features from 3D 
classification and segmentation network 324. Scatterplot 
generator 326 may be configured to scatter the encoded 
features back to their original pillar locations to create a 
pseudo-image tensor of shape (C, H, W), where H and W 
indicate the height and width of the pseudo-image. This 
pseudo-image tensor is the Birdseye view 330. 
10080] As indicated above, two pillar feature networks 
320 are provided to operate on two separate point clouds 
312, 314, which may be consecutive in time. This results in 
two birds-eye view images 332, 334 having 3-D embeddings 
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(i.e., pillar features), one representing the first point cloud 
(e.g., the point cloud at time t-1) and one representing the 
second point cloud (e.g., the point cloud at time t). Where 
more than two point clouds are used to perform the flow 
estimation, a corresponding quantity of pillar feature net-
works can be provided to operate on the point clouds and 
generate birds-eye view images for each point cloud. 
10081] To associate the 3-D embeddings (i.e., pillar fea-
tures) for each 2-D BeV grid 332, 334, the system may be 
configured to treat this problem as a 2-D optical flow 
estimation in BeV. Accordingly, model architecture param-
eters such as receptive field and correlation layer parameters 
may be used to account for the maximum relative motion 
that would be expected to be encountered between consecu-
tive LIDAR sweeps, given the time delta between frames, 
grid resolution, and typical vehicle speeds. For example 
assume in one application that the maximum velocity of a 
vehicle encountered might be 30 mIs. Thus for oncoming 
traffic, it may be appropriate to account for a 60 m/s closing 
rate. Further assume a time between frames of 0.1 seconds. 
With such parameters, the system may be configured to 
account for up to 6 m of motion between frames. If the cell 
size is 0.25 m, then the corresponding cells between images 
can be +1-24 cells in position difference. Therefore, the 
network is ideally able to essentially search across this 
resolution. For example, +1-24 cells at the full resolution 
would correlate to +1-6 cells at the ¼ resolution. 
10082] At operation 430, the pillar features are further 
encoded via a feature pyramid network 340. Feature pyra-
mid network 340 may be implemented as a feature extractor 
for object detection operating on a pyramid of features. 
Feature pyramid network 340 may include bottom-up and 
top-down pathways. The bottom-up pathway is the usual 
convolutional network for feature extraction. Moving up the 
bottom-up pathway, the spatial resolution decreases, but the 
semantic value for each layer increases. Moving down the 
top-down pathway, the spatial resolution increases, but the 
semantic value for each layer decreases. 
10083] Embodiments may also provide 2-D map informa-
tion, such as BeV on- or off-road images from a map 
database as an additional channel input to the feature pyra-
mid network. Sensor fusion can enhance performance by 
using inputs from other data sources as well. For example, 
embodiments may further leverage radar data as an addi-
tional input channel to the feature pyramid network. This 
may include range, range-rate (velocity) and occupancy 
information from the radar return signal. 
10084] The features extracted by feature pyramids 340 are 
provided to optical flow network 350. At operation 432, the 
first image (the image at time t-1) is warped by warping 
module 352. Warping module 352 adjusts the first image to 
align with the subsequent image (the image at time t) so that 
the features can be appropriately compared. Where more 
than two images are used, warping can be applied to all 
images corresponding to the time prior to t to align them 
with the most current image (the image at time t) so that the 
features can be compared across all images. 
10085] It should be noted that warping can be performed 
prior to running the network or within the network, and that 
the outputs may be different depending on where warping is 
performed. For example, in some embodiments if an exter-
nal motion signal from an inertial navigation system is 
available, the pillars can be scattered to the same "global" 
positions in two frames such that the network is only 
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estimating dynamic motion (i.e., static cells will output 
motion vectors of zero). In other embodiments, the system 
can be configured to center each pseudo image about the 
corresponding vehicle position for the cloud (for example, 
the t-1 image may be centered at (1,1) in world coordinates 
and the t image centered at (2,2) in world coordinates). The 
result of this is for cells in the output that correspond to 
non-moving objects, the estimated motion vector for that 
cell would be the host vehicle's ego-motion (i.e., self-
motion) relative to that cell. Another step, such as Random 
Sample Consensus (RANSAC) for example, may be imple-
mented, or another network head used to estimate the dx, dy, 
d-theta of the host vehicle between the frames. Embodi-
ments may further be configured to use this approach to 
supervise with the network during training with the outputs 
of the inertial navigation system for free ground truth data. 
10086] At operation 434, the warped first image (and 
previous images, where applicable) and the second image 
are compared by a cost volume module 354 to determine 
differences between the images, where the matching cost, or 
cost function, is defined as the correlation between the two 
feature maps. Particularly, cost volume module 354 may be 
configured to identiFy displacement of a feature from the 
first image to the second image. The cost volume block may 
be implemented to use distance metrics such as correlation, 
normalized cross correlation and cosine distance to compare 
a candidate alignment. This information can be provided to 
flow estimator module 356 which, at operation 436 uses 
these differences to estimate the flow of the object. In some 
embodiments, the final output is a 2-D flow vector for each 
cell. 
10087] At operation 438, context network 358 may be 
applied to exploit contextual information for additional 
refinement. The context network may be implemented as a 
feedforward CNN. More particularly, in some embodiments 
this is implemented as a feedforward CNN based on dilated 
convolutions, having 7 convolutional layers with kernel size 
3. 

10088] In some embodiments, the flow block (comprising 
warping, cost volume, and flow estimation) can be imple-
mented to occur at multiple working resolutions and can be 
chained together. For example, in the above example, if the 
true motion at full resolution is +23 cells, then the ¼ 
resolution flow block might estimate +5 cells (i.e., 20 cells 
of motion at full resolution) and then warp the image so that 
3 cells of motion are leftover. Then the ½ resolution might 
estimate +2 cell (4 cells of motion at full resolution) and 
warp so that 1 cell of motion is leftover. The full resolution 
might estimate —1 cell, so that the total motion estimated is 
+23. Thus each level may be responsible for estimating the 
residual or leftover motion. This can effectively narrow the 
search space, thus enabling computational efficiency in the 
network as the search space increases quadratically with 
search radius. 

10089] Some embodiments may use annotated track 
cuboids to auto-generate the groundtruth 2-D BeV flow in 
multiple scales. The system may be configured to assume 
that only labeled dynamic objects such as cars, bicycles and 
pedestrian, can have a valid velocity, and that all non-labeled 
obstacles and background should have zero velocity. The 
system may be configured to determine the ground truth 
flow of each annotated object by leveraging the fact that 
each cuboid has a unique identifier through the entire snippet 
sequence. Therefore, the system can use the difference in 
poses divided by the time elapsed between frames to deter-
mine the instantaneous ground truth velocity for each 
cuboid. 

Nov. 18, 2021 

10090] Let denote f01 the flow field at the lth pyramid level 
predicted by the network with learnable parameters B and 
are the corresponding groundtruth. The system can apply a 
multi-scale training loss: 

L 

£ = 
- 

1=10 

10091] where 112 is the L2 norm of a vector, a 1 in the 
training loss are set to be: 

10092] a 6 0.32, 
10093] a 5 0.08, 
10094] a 4 0.02, 
10095] a 3 0.01, and 
10096] a 2 0.005. 

10097] In various embodiments other techniques can be 
used for final estimation. For example one embodiment 
aggregates the BeV grid motion vectors as estimated by the 
above-described method of FIG. 4 to compute a single mean 
velocity and co-variance per obstacle cluster. This may be 
accomplished by sampling the set of BeV motion cells 
occupied by the cluster. 
10098] Another embodiment uses the same approach to 
aggregate the BeV grid motion vectors to a mean per cluster, 
except each sample is weighted based on the occupancy 
probability of the cell. This embodiment is referred to as the 
FlowPillars method in Tables 1 and 2, below. The velocity 
vector and associated confdence per cell can be used as the 
observation prior for filtering the cell's velocity over time, 
such as with a dynamic occupancy grid. 
10099] Embodiments disclose herein may not only effec-
tively estimate flow in 2D BeV grids but may also improve 
performance in both dynamic and static object tracking. 
Experimental results have shown that disclosed embodi-
ments improve the performance of dynamic objects tracking 
using either the public dataset or a self-collected dataset. 
Additionally, experimental results establish that the pro-
posed system is feasible for use in autonomous driving 
implementations, delivering strong improvement in generic 
obstacle tracking over conventional solutions. 
10100] The quantitative and qualitative results show 
strong enhancements to tracking performance using the 
velocity estimation approaches described above as set out in 
Tables 1 and 2. In particular, mean and worst case perfor-
mance are improved across most object class types. In the 
Tables, the baseline approach uses a nearest neighbors 
(mahalanobis distance metric) based data association 
approach and centroid filtering. 

TABLE 1 

Mean Track Velocity Error In M/S 

Dynamic 
Ground Truth Categoly; Base- Occupancy 
Integration Technique line Grid FlowPillars 

Static Background Obstacles 0.839 0.848 0.480 
Pedestrian and Cyclist 0.772 0.523 0.641 
Obstacles observed stationary (like 0.861 0.512 0.059 
parked car, excluding static 
background) 
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TABLE 1-continued 

Mean Track Velocity Error In M/S 

Dynamic 
Ground Truth Categoly; Base- Occupancy 
Integration Tecimique line Grid FlowPillars 

Slow Moving Obstacles (0, 3] rn/s 0.566 0.570 0.666 
Fast Moving Obstacles [3, c) rn/s 2.396 2.371 2.036 

TABLE 2 

95th Highest Percentile Track Velocity Error In MIS 

Dynamic 
Ground Truth Categoly; Base- Occupancy 
Integration Tecimique line Grid FlowPillars 

Static Backgroimd Obstacles 3.993 3.803 2.322 
Pedestrian and Cyclist 3.411 1.621 1.446 
Obstacles observed stationary 3.826 1.796 0.151 
(like parked car, excluding 
static background) 
Slow Moving Obstacles (0, 3] m/s 2.117 1.709 1.560 
Fast Moving Obstacles [3, c) m/s 15.188 11.490 7.468 

10101] In some embodiments, systems and methods may 
be implemented to perform bird's eye view based velocity 
estimation via self-supervised learning, and the scene flow 
estimation system may be trained using self-supervised 
losses. Self-supervised loss may computed using interac-
tions between different outputs of the scene flow estimation 
system (e.g., forward and backward flow estimates for 
multiple pillar features (and at different levels of the feature 
pyramid)) so that data labels or feature annotations are not 
needed. Self-supervised learning may be accomplished via a 
proxy-loss that does not require ground truth labels for the 
training data. Embodiments may be confgured to minimize 
the "distance" between the two or more subsequent feature-
maps that are derived directly from the raw data, conditioned 
on the flow predicted. Based on this, the system learns to 
predict a BeV flow estimator that is consistent with the 
motion of BeV point-cloud features, without needing ground 
truth cuboid trajectories/labels. 

10102] In various embodiments, corresponding pillar fea-
tures defined by forward and backward optical flow can be 
compared and the result used as supervision for the training. 
Some implementations may be confgured to learn convo-
lutional flow estimations without using training data that is 
manually annotated. The training data for the model may be 
autonomously labelled by identifying and exploiting the 
relations or correlations among multiple inputs. 

10103] In some implementations, a data aggregator can 
collect and aggregate data associated with the bird's eye 
view embeddings. Dynamic and static masks can be used for 
feature selection and the flows for selected features evalu-
ated in two directions to train the estimation model. The 
training data can be stored in a training data repository, and 
may include values for the flow being predicted by the 
model. 

10104] FIG. S is a diagram illustrating an example of 
velocity estimation via self-supervised learning in accor-
dance with various embodiments. FIG. 6 illustrates an 
example process for velocity estimation via self-supervised 
learning in accordance with various embodiments. 
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10105] With reference now to FIGS. S and 6, This example 
includes a pillar feature network 520, and an optical flow 
network 540. In this example, the system includes two pillar 
feature networks 520 and two flow networks 540. This 
example also includes an aggregator 552, a dynamic mask 
554 and a static mask 556. Pillar feature network 520 may 
be implemented similarly to pillar feature network 320, and 
as with the example of FIG. 3, pillar feature network 520 
includes a voxelizer 322, a 3D classification and segmenta-
tion network 324 and a scatterplot generator 326. In various 
embodiments, Voxelizer 322, 3D classification and segmen-
tation network 324 and scatterplot generator 326 perform 
similar functions as described above to arrive at two birds-
eye view images 531, 532 having BeV embeddings (e.g., 
birds-eye view images 332, 334), one representing the first 
point cloud (e.g., the point cloud at time t-1) and one 
representing the second point cloud (e.g., the point cloud at 
time t). 
10106] Accordingly, at operation 622, the system encodes 
data of the point cloud data sets using pillar feature network 
520 to extract two-dimensional (2D) bird's-eye-view 
embeddings for each of the point cloud data sets in the form 
of pseudo images. In some embodiments, 2D bird's-eye-
view embeddings for a first of the two point cloud data sets 
may include pillar features for the first point cloud data set 
and the 2D bird's-eye-view embeddings for a second of the 
two point cloud data sets may include pillar features for the 
second point cloud data set. 
10107] At operation 624 the embeddings of the two birds-
eye view images 531, 532 are aggregated to train classifiers 
for the features. Aggregator 552 may be configured to group 
similar features (in the form of pillars) together and repre-
sent them as a single feature for more efficient processing. 
This may allow the system to approximate the original 
problem with fewer-states in the form of an aggregated 
problem. The system may then solve the aggregated problem 
and "extend" its cost function to the original data set. 
10108] Aggregator 552 may be implemented as a classifier 
to classify the pillar features. Aggregator 552 may be, for 
example, a probabilistic boosting tree, support vector 
machine, or other machine learning classifier. Other classi-
fiers may include, for example, single class or binary clas-
sifiers, cascaded classifiers, hierarchal classifiers, multi-
class classifiers, and soon. A combination of classifiers may 
also be used. Multi-class classifiers may include, for 
example, Classification And Regression Tree (CART), 
K-nearest neighbor, neural network and mixture models. 
10109] Aggregator 552 receives pillar features from points 
of the multiple BeV images. An input vector of aggregator 
552 may include some or all features directly from two 
birds-eye view images 531, 532 having BeV embeddings 
such that pillar features from the two (or more) BeV images 
are aggregated. In the example of FIG. 5, aggregator 552 
receives all of the pillar features from the various points of 
all BeV images. In other embodiments, fewer than all of the 
pillar features from bird's-eye view images 531, 532 may be 
used. 
10110] At operation 626, the aggregated features are 
masked using a static mask 556, a dynamic mask 554, or 
both. Mask sizes may be fixed (e.g., based on BeV size or 
anticipated number of feature pillars), or sizing may 
dynamic to accommodate changing quantities of feature 
pillars. Dynamic mask 554 can be configured such that the 
system generates the masking pattern every time (or every 
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x-number of times) a new data set is fed into the model. 
Static mask 556, on the other hand, may remain fixed for 
each training set. 
10111] A dynamic mask 554 may be implemented as a 
dynamic feature mask that is configured to identify and 
mask redundant features. Masking may also be performed 
based on importance of the features. If a feature's impor-
tance increases or decreases (e.g., independently, or relative 
to other features), the mask may be updated accordingly. 
Previously unimportant features that are now important may 
be unmasked and features that have lost importance may 
now be masked. 
10112] At operation 628, flow nets 541 and 542 perform 
forward and backward flow estimation. Here, two flow nets 
541, 542 are provided such that flows in both the forward 
and the backward directions from the two bird's-eye view 
image embeddings can be calculated. In this example, flow 
net 541 calculates the flow of the feature pillars from image 
one to image two while flow net 542 calculates the flow of 
the feature pillars from image two to image one. 
10113] Although not illustrated, prior to processing with 
flow nets 541 and 542, the pillar features may be further 
encoded via a feature pyramid network (e.g., feature pyra-
mid network 340). Feature pyramid networks may be imple-
mented as a feature extractor for object detection operating 
on a pyramid of features, and may include multiple levels at 
different resolutions with bottom-up and top-down pathways 
through the levels. The bottom-up pathway is the usual 
convolutional network for feature extraction. Moving up the 
bottom-up pathway, the spatial resolution decreases, but the 
semantic value for each layer increases. Moving down the 
top-down pathway, the spatial resolution increases, but the 
semantic value for each layer decreases. 
10114] Embodiments may be configured to perform self-
supervised learning for multiple hierarchical resolutions. In 
some embodiments, self-supervised learning is performed 
by minimizing losses for each hierarchical resolution 1. 
Flow nets 541, 542 may be implemented to estimate the flow 
based on a cost function. Flow net 541 can determine the 
flow from one to two, f11 2, using the normal function: 

E 11+f1 21-E21 2=O. 

10115] And, flow net 542 can determine the flow from two 
to one, f12 1, using the normal function: 

E 21+f2 11-E11 2=O. 

10116] The flow from one to two and two to one can 
provide, respectively: 

10117] These can be combined as: 

If1 dJ+f d,J 
- 2-1 

10118] Where s represents static objects and d represents 
dynamic objects. 
10119] At operation 630, the system performs self-super-
vised learning based on the flow estimates. As noted, self-
supervised learning is performed by minimizing the cost 
function for each of a plurality of hierarchical resolutions 1, 
which can be derived from a feature pyramid. The system 
can be configured to perform a check of the consistency 
between the forward and backward flows and compute a 
consistency loss. The system may also compute bidirec-
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tional image-based losses by comparing BeV image 531 to 
backward warped BeV image 532 and BeV image 532 to 
backward warped BeV image 531. This may be performed, 
in some embodiments, using bilinear sampling. The data 
loss can be computed based on the forward-backward con-
sistency and the warped images for each point in the images. 
Accordingly, the system may be configured to train the 
machine learning model using a minimal or reduced training 
data set. 
10120] Where embodiments of the system are imple-
mented in whole or in part using software, these software 
elements can be implemented to operate with a computing or 
processing component capable of carrying out the function-
ality described with respect thereto. One such example 
computing component is shown in FIG. 7. Various embodi-
ments are described in terms of this example-computing 
component 700. After reading this description, it will 
become apparent to a person skilled in the relevant art how 
to implement the application using other computing com-
ponents or architectures. 
10121] Referring now to FIG. 7, computing component 
700 may represent, for example, computing or processing 
capabilities found within a self-adjusting display, desktop, 
laptop, notebook, and tablet computers. They may be found 
in hand-held computing devices (tablets, PDA's, smart 
phones, cell phones, palmtops, etc.). They may be found in 
workstations or other devices with displays, servers, or any 
other type of special-purpose or general-purpose computing 
devices as may be desirable or appropriate for a given 
application or environment. Computing component 700 
might also represent computing capabilities embedded 
within or otherwise available to a given device. For 
example, a computing component might be found in other 
electronic devices such as, for example, portable computing 
devices, and other electronic devices that might include 
some form of processing capability. 
10122] Computing component 700 might include, for 
example, one or more processors, controllers, control com-
ponents, or other processing devices. Processor 704 might 
be implemented using a general-purpose or special-purpose 
processing engine such as, for example, a microprocessor, 
controller, or other control logic. Processor 704 may be 
connected to a bus 702. However, any communication 
medium can be used to facilitate interaction with other 
components of computing component 700 or to communi-
cate externally. 
10123] Computing component 700 might also include one 
or more memory components, simply referred to herein as 
main memory 708. For example, random access memory 
(RAM) or other dynamic memory, might be used for storing 
information and instructions to be executed by processor 
704. Main memory 708 might also be used for storing 
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor 
704. Computing component 700 might likewise include a 
read only memory ("ROM") or other static storage device 
coupled to bus 702 for storing static information and instruc-
tions for processor 704. 
10124] The computing component 700 might also include 
one or more various forms of information storage mecha-
nism 710, which might include, for example, a media drive 
712 and a storage unit interface 720. The media drive 712 
might include a drive or other mechanism to support fixed or 
removable storage media 714. For example, a hard disk 
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drive, a solid-state drive, a magnetic tape drive, an optical 
drive, a compact disc (CD) or digital video disc (DVD) drive 
(R or RW), or other removable or fixed media drive might 
be provided. Storage media 714 might include, for example, 
a hard disk, an integrated circuit assembly, magnetic tape, 
cartridge, optical disk, a CD or DVD. Storage media 714 
may be any other fixed or removable medium that is read by, 
written to or accessed by media drive 712. As these 
examples illustrate, the storage media 714 can include a 
computer usable storage medium having stored therein 
computer software or data. 
10125] In alternative embodiments, information storage 
mechanism 710 might include other similar instrumentali-
ties for allowing computer programs or other instructions or 
data to be loaded into computing component 700. Such 
instrumentalities might include, for example, a fixed or 
removable storage unit 722 and an interface 720. Examples 
of such storage units 722 and interfaces 720 can include a 
program cartridge and cartridge interface, a removable 
memory (for example, a flash memory or other removable 
memory component) and memory slot. Other examples may 
include a PCMCIA slot and card, and other fixed or remov-
able storage units 722 and interfaces 720 that allow software 
and data to be transferred from storage unit 722 to comput-
ing component 700. 
10126] Computing component 700 might also include a 
communications interface 724. Communications interface 
724 might be used to allow software and data to be trans-
ferred between computing component 700 and external 
devices. Examples of communications interface 724 might 
include a modem or softmodem, a network interface (such 
as Ethernet, network interface card, IEEE 802.XX or other 
interface). Other examples include a communications port 
(such as for example, a USB port, IR port, R5232 port 
Bluetooth® interface, or other port), or other communica-
tions interface. Software/data transferred via communica-
tions interface 724 may be carried on signals, which can be 
electronic, electromagnetic (which includes optical) or other 
signals capable of being exchanged by a given communi-
cations interface 724. These signals might be provided to 
communications interface 724 via a channel 728. Channel 
728 might carry signals and might be implemented using a 
wired or wireless communication medium. Some examples 
of a channel might include a phone line, a cellular link, an 
RF link, an optical link, a network interface, a local or wide 
area network, and other wired or wireless communications 
channels. 
10127] In this document, the terms "computer program 
medium" and "computer usable medium" are used to gen-
erally refer to transitory or non-transitory media. Such media 
may be, e.g., memory 708, storage unit 720, media 714, and 
channel 728. These and other various forms of computer 
program media or computer usable media may be involved 
in carrying one or more sequences of one or more instruc-
tions to a processing device for execution. Such instructions 
embodied on the medium, are generally referred to as 
"computer program code" or a "computer program product" 
(which may be grouped in the form of computer programs 
or other groupings). When executed, such instructions might 
enable the computing component 700 to perform features or 
functions of the present application as discussed herein. 
10128] It should be understood that the various features, 
aspects and functionality described in one or more of the 
individual embodiments are not limited in their applicability 
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to the particular embodiment with which they are described. 
Instead, they can be applied, alone or in various combina-
tions, to one or more other embodiments, whether or not 
such embodiments are described and whether or not such 
features are presented as being a part of a described embodi-
ment. Thus, the breadth and scope of the present application 
should not be limited by any of the above-described exem-
plary embodiments. 
10129] Terms and phrases used in this document, and 
variations thereof, unless otherwise expressly stated, should 
be construed as open ended as opposed to limiting. As 
examples of the foregoing, the term "including" should be 
read as meaning "including, without limitation" or the like. 
The term "example" is used to provide exemplary instances 
of the item in discussion, not an exhaustive or limiting list 
thereof. The terms "a" or "an" should be read as meaning "at 
least one," "one or more" or the like; and adjectives such as 
"conventional," "traditional," "normal," "standard," 
"known." Terms of similar meaning should not be construed 
as limiting the item described to a given time period or to an
item available as of a given time. Instead, they should be 
read to encompass conventional, traditional, normal, or 
standard technologies that may be available or known now 
or at any time in the future. Where this document refers to 
technologies that would be apparent or known to one of 
ordinary skill in the art, such technologies encompass those 
apparent or known to the skilled artisan now or at any time 
in the future. 
10130] The presence of broadening words and phrases 
such as "one or more," "at least," "but not limited to" or 
other like phrases in some instances shall not be read to 
mean that the narrower case is intended or required in 
instances where such broadening phrases may be absent. 
The use of the term "component" does not imply that the 
aspects or functionality described or claimed as part of the 
component are all confgured in a common package. Indeed, 
any or all of the various aspects of a component, whether 
control logic or other components, can be combined in a 
single package or separately maintained and can further be 
distributed in multiple groupings or packages or across 
multiple locations. 
10131] Additionally, the various embodiments set forth 
herein are described in terms of exemplary block diagrams, 
flow charts and other illustrations. As will become apparent 
to one of ordinary skill in the art after reading this document, 
the illustrated embodiments and their various alternatives 
can be implemented without confnement to the illustrated 
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a 
particular architecture or confguration. 

What is claimed is: 
1. A method for determining velocity of an object asso-

ciated with a three-dimensional (3D) scene, the method 
comprising: 

receiving two sets of 3D point cloud data of the scene 
from two consecutive point cloud sweeps; 

aligning the two consecutive point cloud data sets into the 
same coordinate frame; 

encoding data of the point cloud data sets using a pillar 
feature network to extract two-dimensional (2D) 
bird's-eye-view embeddings for each of the point cloud 
data sets in the form of pseudo images, wherein the 2D 
bird' s-eye-view embeddings for a first of the two point 
cloud data sets comprises pillar features for the first 
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point cloud data set and the 2D bird' s-eye-view embed-
dings for a second of the two point cloud data sets 
comprises pillar features for the second point cloud 
data set; and 

encoding the pillar features using a feature pyramid 
network and performing a 2D optical flow estimation to 
estimate the velocity of the object. 

2. The method of claim 1, further comprising applying a 
contextual network to use contextual information to refine 
the velocity estimate. 

3. The method of claim 2, wherein the context network is 
a feedforward CNN based on dilated convolutions. 

4. The method of claim 1, wherein receiving two sets of 
3D point cloud data of the scene comprises receiving the first 
point cloud data set by a first pillar feature network and 
receiving a second point cloud data set by a second pillar 
feature network, wherein the first point cloud data set 
represents the scene at a time t-1 and the second point cloud 
data set represents the scene at a time t subsequent to the 
time t-1. 

S. The method of claim 1, wherein encoding data of the 
point cloud data sets comprises voxelizing the point cloud 
data sets to render surfaces in the data sets onto a grid of 
discretized volume elements in a 3D space to create a set of 
pillars. 

6. The method of claim 5, wherein the set of pillars 
comprise a (D, P, N) shape tensor in which P is the number 
of pillars and N denotes the number of points per pillar. 

7. The method of claim 5, further comprising encoding 
voxel information from the voxelizing to extract the features 
of the point cloud data sets. 

8. The method of claim 7, further comprising scattering 
the encoded features back to their original pillar locations to 
create the bird' s-eye-view. 

9. The method of claim 1, wherein the 2D optical flow 
estimation comprises warping the pseudo image of the first 
point cloud data set to align the pseudo image of the first 
point cloud data set with the pseudo image of the second 
point cloud data set. 

10. The method of claim 9, wherein the 2D optical flow 
estimation further comprises computing a cost function of 
the warped pseudo image of the first point cloud data set and 
the pseudo image of the second point cloud data set, by 
identifying displacement of a feature from the first image to 
the second image. 

11. The method of claim 10, wherein the 2D optical flow 
estimation further comprises using the cost function to 
estimate the flow of the object. 

12. The method of claim 1, wherein performing a 2D 
optical flow estimation to estimate the velocity of the object 
comprises aggregating bird's eye view motion vectors to 
compute a single mean velocity and co-variance for each 
obstacle cluster. 

13. The method of claim 12, wherein a sample is weighted 
based on an occupancy probability of the cell to which the 
sample belongs. 

14. The method of claim 1, wherein estimated velocity of 
the object is a 2-D flow vector for the object. 

15. The method of claim 1, further comprising using 
annotated track cuboids to auto-generate the 2D flow in 
multiple scales. 
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16. The method of claim 1, further comprising performing 
flow estimation only on labeled dynamic objects and not 
performing flow estimation on non-labeled obstacles or 
background objects. 

17. The method of claim 1, wherein the method is 
performed using three or more sets of 3D point cloud data 
of the scene, including aligning all of the point cloud data 
sets into the same coordinate frame, encoding data of each 
of the point cloud data sets using a pillar feature network to 
extract two-dimensional (2D) bird's-eye-view embeddings 
for each of the point cloud data sets comprising pillar 
features for each point cloud data set, and encoding the pillar 
features using a feature pyramid network and performing a 
2D optical flow estimation to estimate the velocity of the 
object. 

18. The method of claim 1, wherein encoding the pillar 
features using a feature pyramid network further includes 
using 2D map information as an additional channel input to 
the feature pyramid network. 

19. The method of claim 1, further comprising filtering the 
point cloud datasets using a ground height map, wherein the 
filtering comprises comparing data point heights against 
ground height and discarding a data point whose point 
height is not greater than the ground height at the point's 
location. 

20. A system for determining velocity of an object asso-
ciated with a three-dimensional (3D) scene, the system 
comprising: 

a non-transitory memory configured to store instructions; 

at least one processor configured to execute the instruc-
tions to perform the operations of: 

receiving two sets of 3D point cloud data of the scene 
from two consecutive point cloud sweeps; 

aligning the two consecutive point cloud data sets into 
the same coordinate frame; 

encoding data of the point cloud data sets using a pillar 
feature network to extract two-dimensional (2D) 
bird' s-eye-view embeddings for each of the point 
cloud data sets in the form of pseudo images, 
wherein the 2D bird' s-eye-view embeddings for a 
first of the two point cloud data sets comprises pillar 
features for the first point cloud data set and the 2D 
bird' s-eye-view embeddings for a second of the two 
point cloud data sets comprises pillar features for the 
second point cloud data set; and 

encoding the pillar features using a feature pyramid 
network and performing a 2D optical flow estimation 
to estimate the velocity of the object. 

21. A system for determining velocity of an object asso-
ciated with a three-dimensional (3D) scene, the system 
comprising: 

a pillar feature network to receive two sets of 3D point 
cloud data of the scene from two consecutive point 
cloud sweeps, and to encode data of the point cloud 
data to extract two-dimensional (2D) bird's-eye-view 
embeddings for each of the point cloud data sets in the 
form of pseudo images, wherein the 2D bird's-eye-
view embeddings for a first of the two point cloud data 
sets comprises pillar features for the first point cloud 
data set and the 2D bird' s-eye-view embeddings for a 
second of the two point cloud data sets comprises pillar 
features for the second point cloud data set; and 
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feature pyramid network to encode the pillar features 
and performing a 2D optical flow estimation to estimate 
the velocity of the object. 

* * * * * 
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